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Abstract
In this article, we discuss a source of security vulnerabil-
ities related to zero-sized heap allocations. We present
a feasibility study to show the use of a theorem prover
based extended static checker to help code audit to find
these vulnerabilities. We employed this tool to uncover
around 10 local and remote untrusted code execution vul-
nerabilities in three core OS components. We highlight
the benefits, the challenges faced and outstanding prob-
lems to enable wider use. Additional manual code re-
view of remotely exposed software suggests that zero and
near-zero allocations are particularly difficult to handle
for developers.

1 Introduction

The dynamic memory allocator is a fundamental com-
ponent of modern operating systems. Among all critical
vulnerabilities found and fixed every year by software
industry vendors, heap-based buffer overflows are one
of the most important sources of security threats. Such
defects can allow unauthorized users to elevate their
credentials via untrusted code execution on vulnerable
computers.

In this article, we show how formal methods can aid
the detection of particular weaknesses of the heap man-
agement. The case of zero-sized heap allocations is not
specific to any operating system and can affect both user-
land and kernel-land allocators. The article is divided
into four main developments:

• We reveal the exact nature of the weakness intro-
duced by zero-sized allocations and provide a tax-
onomy of all tested operating systems (both in the
Windows and UNIX world). Most OS allocators are
exposed as calling their API returns valid memory
chunks when allocation functions are called with

size 0. Returning NULL can also be a problem in
some conditions that we detail below.

• We present our experiments in using an extended
static checker HAVOC [1], a heap-aware verifier for
C programs. We have deployed the analyser on mul-
tiple kernel components, some of them reaching one
million lines of C code. The analyser produces a
reasonable amount of warnings without any com-
plex configuration.

• We present one real vulnerability uncovered in a
core OS component. Other similar vulnerabilities
were also found when multiple components are in-
teracting.

• We show an alternative configuration of the tool
suitable to detect vulnerabilities when the size of
heap chunks is in the neighbourhood of zero (e.g.
near-zero allocations) and give another uncovered
remote vulnerability.

We want to emphasize that this weakness should not
be considered as a new vulnerability class (such as buffer
overflows), but rather a new type of code defect in the
same style as integer overflows, as many occurrences are
legitimate and do not lead to a vulnerability.

2 Zero allocation basics

Zero allocations are considered valid behaviours of
programs as defined by the ISO C99 standard and its
ancestors. In essence, the standard is described with the
following words: ”If the size of the space requested is
zero, the behaviour is implementation defined : either a
NULL pointer is returned, or the behaviour is as if the
size were some non-zero value, except that the returned
pointer shall not be used to access an object.”.
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1. void f() 1. void g(char *buf)
2. { 2. {
3. PSTRUCT data; 3. UINT size;
4. UINT size; 4. PUCHAR pstr;
5. PSTRUCT2 ptr;

6. data = readstruct(); 5. size = readint() + sizeof(TYPE);
7. if (data->nbr > MAXSHORT) 6. ptr = Alloc(size);
8. return ERR; 7. if (ptr == NULL)
9. size = data->nbr * 2; 8. return -ERR;
10. ptr = Alloc(size); 9. memcpy(ptr, (PTYPE) buf, sizeof(TYPE));
11. if (ptr == NULL) (...)
12. return ERR;
13. ptr->field = data->field;

(...)

Figure 1: Zero allocations vulnerabilities

Figure 1 shows two different zero allocation vulnera-
bilities in independent functions f and g. First in f : an
untrusted structure value of type STRUCT is written to
variable data on line 6. Later on line 9, a size variable is
computed from the value of the unknown value held in
the data->nbr untrusted structure field. Note that the
untrusted value is smaller than MAXSHORT (a constant
defined to 0xFFFF on most systems) since line 7 ensures
that bigger values are discarded, as to avoid any integer
overflow on variable size. However, if data->nbr has
value 0, the Alloc function (either malloc, or kmalloc,
etc) can either return an error value NULL (well checked
in example 1), or the address of a valid heap chunk (as
implemented by most allocators) allocated with only
zero bytes of size (in reality, a few padding bytes are
always allocated). A latter memory write happens when
the ptr variable is dereferenced, and written to out of
bounds. A successful attack requires that the offset of
the accessed structure field is bigger than the allocated
memory size on line 10. This condition will often be
satisfied in the vulnerabilities we have found.

Another zero allocation vulnerability can arise when an
untrusted value is manipulated during integer arithmetic.
In vulnerable function g, a size variable is computed
from an untrusted value returned by the readint()
function. A constant type header size is then added on
the total allocated size. As this operation happens on
computers with modulo arithmetic (and not on infinite
integers), the size value can go beyond the 232 − 1 limit
and become a small number. A buffer overflow happens
on line 9 as the allocated size is smaller than the size
of TYPE. Note that we can characterize this second
example as a zero allocation vulnerability since the
value returned by readint() could be anything, including
the value that reset variable size to 0.

We do not consider zero allocations to be a new

class of vulnerabilities. Indeed, allocating zero bytes is a
safe practice as long as proper handling of the allocated
buffer is performed before and after the call to the
dynamic allocation function. Additionally, sanitization
must be performed on untrusted variable components
present in the size variable, as to avoid any boundary
condition that would lead to memory safety issues. Zero
allocations are one instance of such boundary value, but
similar analysis can be performed on other boundary
values as to uncover corner cases that are harder to
handle for software developers.

3 OS allocators classification

The detection of zero allocation vulnerabilities is rele-
vant on all operating system. We summarize this infor-
mation in the table of figure 2. There are two possible
exposed behaviour of the heap allocator concerning zero-
sized requests:

• Either the allocator returns a valid chunk address.
Writing to the address can lead to heap corruption.
The address generally points to a chunk of a few
bytes (0 + small padding). The allocator will usu-
ally revert to a 16 bytes chunk as in most case, this
is the smallest available size available cached chunk
lists (either bins, slabs, slubs, etc). This is the most
commonly encountered behaviour.

• Or the allocator function returns NULL. This is
safe with the appropriate check for retptr != NULL,
which can be forgotten in some cases (especially in
kernel mode). Solaris OS behaviour in kernel mode
allocators can be to return a NULL pointer. The de-
fault Linux kernel allocator will return a constant
0x10, which bypass the traditional check to NULL
and is also exposed to NULL page dereference type
of attack. Of course, such attack will not succeed
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User-land Kernel-land
Windows (7) Yes Yes

Linux 2,6 (deb) Yes Yes
Linux 2.6 PaX Yes No
FreeBSD (5.5) No Yes
NetBSD (3.0.1) Yes Yes
OpenBSD (4.4) Yes Yes

Solaris (Open/10) Yes Yes
Mac OSX (Leopard) Yes Yes

Figure 2: Exposed memory allocators

if NULL page protection is properly implemented,
which we witnessed is not always the case [22].

In all occasions but two, we found that the tested
allocator was unsafely exposed to zero allocation
vulnerabilities. The non-exposed cases were found
on FreeBSD user-land allocator and the Linux/PaX
kernel memory allocator. On the tested FreeBSD default
user-land allocator, passing zero to the malloc function
will return a constant 0x800. This value happens to be a
non-mapped address. Unless a new intrusion technique
consisting of mapping the NULL pages of privileged
binaries comes out, we can assume this behaviour is
safe from attacks. When applying the PaX patch on the
Linux kernel, the return value of zero allocation calls is
changed for 0xFFFFF000, which is the address of an
unmapped (in fact, the last) page in the kernel virtual
address space. This modification gives a good mitigation
for zero kernel allocations on Linux/PaX machines as
it limits the impact of the vulnerability to a denial of
service, effectively enforcing the ISO specification.

Given the wide exposed attack surface for this prop-
erty, we investigated the automated static analysis of pro-
grams in order to find all such vulnerabilities automati-
cally in large depot of C source code. We now explain
how programs can be verified for the absence of zero al-
locations by a technique issued from theorem proving.

4 Extended static checking

A regular security analysis process involves a lot of man-
ual code review. The lack of competent human analyst
can be a motive why automated vulnerability analysis is
desired. Moreover, the human error can lead to missing
bugs. Nevertheless, automated tools also leverage the an-
alyst’s domain specific knowledge by making it possible
to tweak the verifier’s configuration or directives as to
reflect implicit coding rules or guessed logical invariants
that can be tricky to find automatically.

There are two main techniques of automated vulnera-
bility analysis currently being deployed in the computer
security industry. The most successful techniques are
called fuzz testing and static analysis. The two tech-
niques are complementary, as fuzz testing allows non-
exhaustive deep traces visits in the test space, while static
analysis is fully exhaustive but limited to a single module
and pre-defined properties. The two techniques are able
to uncover zero allocation bugs. We will focus on static
analysis in the remaining of this article. Static analysis is
a pure white box technique where plain source code (or
clear-text binary code) is required. Static analysers can
be configured to focus on the most dangerous program-
ming problems such as buffer overflows, as well as other
classes of vulnerabilities known to lead to an unautho-
rized code execution. To the authors’ knowledge, there
is no equivalent of such targeted analysis in the fuzz test-
ing world. Unlike fuzz testing, one powerful machine is
sufficient to perform full coverage analysis on a large de-
pot of code. However, static analysis is usually bounded
to a single program or OS component. The combination
of a simple expression of a security property with the ap-
plication of a very precise analysis tool is a key element
of our experiment. We can discard false positives by a
manual review of warnings. Fuzz testing often offers a
quicker reward when you do not have to find all vulner-
abilities. However, the cost of triaging critical from be-
nign vulnerabilities found via fuzzing can also be time-
consuming. In the case where missing vulnerabilities is
not an option, static analysis can assure a complete cov-
erage of the analysed code. This is possible because the
analyser considers a superset of the analysed program’s
behaviours as to avoid missing any corner case that can
be forgotten by dynamic testing. One can also create un-
sound static analysis tools that will not find all vulnera-
bilities but will keep the false positive rate near zero.

4.1 Theorem proving aided code review

We focus on the use of a static verification technique
called theorem proving. This technique makes it pos-
sible to analyse each program path separately as to avoid
introducing any approximation in summaries at program
merge point. Theorem proving theory for call-free, loop-
free programs is pretty well established and implemented
in many modern tools [28] [39] [29] [30]. Our ex-
periments on theorem proving C programs for the dis-
covery of zero allocation vulnerabilities relied on using
HAVOC/Boogie/Z3, a collection of formal analysis tools
developed in Microsoft Research. HAVOC is a heap-
aware verifier for C programs [1] that models the se-
mantic of C constructs (including pointer manipulation)
precisely and accurately. HAVOC relies on the Boogie
theorem prover [24] to construct the verification condi-
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void func(int x, int b)
{

if (x > 0)
{
if (b > 0)

y = x + b;
else

y = x - b;
}
else

y = -x + 1;
// precond: requires(y != 0)
malloc(y);

}

void func(int x0, int b0)
{
// if (x0 > 0)

G1 = (x0 > 0);
// if (b0 > 0)

G2 = (b0 > 0);
y1 = x0 + b0;

//else
y2 = x0 - b0;

//endif
y3 = (G2 ? y1 : y2);

//else
y4 = -x0 + 1;

y5 = (G1 ? y3 : y4);
assert(y5 != 0);

}

// Verification condition
IsSatisfiable(

y1 = x0 + b0
∧ G1 = (x0 > 0)
∧ G2 = (b0 > 0)
∧ y2 = x0 - b0
∧ y3 = (G2 ? y1 : y2)
∧ y4 = -x0 + 1
∧ y5 = (G1 ? y3 : y4)
∧ ¬ (y5 != 0)

);

Figure 3: Construction of the verification condition on C code via SSA form

tion. Boogie constructs a first-order logic formula that
represents the program execution. HAVOC allows user-
defined annotations to be part of the verification condi-
tion. When Boogie calls the constraint solver (in our
case, Z3 [25]), the verification condition is either proved
or violated. A violation reveals that the program speci-
fication (reflected by code annotations) is not respected,
and we may have found a vulnerability. HAVOC is very
attractive for the security analyst as it makes it possible to
quickly capture domain specific knowledge of the anal-
ysis targets by writing code annotations. The annotation
language recognized by HAVOC is well documented and
usable through a Microsoft C compiler plug-in. HAVOC
analyses real C code and not a subset of C. Real C pro-
grams can be analysed but C++ support is still work in
progress. Bit vectors arithmetic can also be enabled as
to gain additional granularity on the modelling of arith-
metic operations, but this feature still has to be exper-
imented on a larger scale. We give an example of se-
quences of logical operations realized by the verifier us-
ing a simplistic loop-free example in Figure 3. We as-
sume that the reader is not familiar with theorem prov-
ing and this example is chosen very simple on purpose.
The analysis is two fold. First, transformation into the
Static Single Assignment (SSA) form [45] allows the dis-
ambiguation between variable versions across different
program paths. Construction of the verification condi-
tion from SSA form is straightforward as it consists of
taking the conjunction of every SSA program statements.
Note how the precondition formula for malloc is negated
in the VC as to make the whole formula false if such
invariant does not hold. The analyser handles loops con-
servatively : if a value of interest (e.g. the allocation size
variable) is modified in the loop, HAVOC will report that
the variable can have any value. It is then possible to en-

force a specific loop invariant to make this warning go
away. Fortunately, the number of loops in a program is
generally fairly small (even in large code bases) and only
those loops whose manipulated variables have an inci-
dence on the size of an allocation are considered, avoid-
ing any unnecessary annotation burden. Warnings pro-
duced by such analysis are generally fast to review : only
few days are necessary to review all warnings in one mil-
lion lines of C code. The review of alarms can be time-
consuming if warnings appear in functions that have lots
of callers. An iterative static analysis process is then used
to refine the warnings list. At some point, loop invariants
are the only remaining annotations that can eliminate the
last spurious warnings. Adding annotations and running
the analyser avoids manual code review where it can be
proven that the program behaves as expected. An exten-
sion of the HAVOC tool allows inter-procedural analysis
based on a fixed-point algorithm called HOUDINI [44].
We have not made use it this feature and the remaining of
the article focuses on results obtained by intra-procedural
analysis only.

5 Detecting complex vulnerabilities

In this section, we justify our approach of detecting the
zero allocation problems at the allocation sites rather
than at the corrupted memory access site. The code snip-
pets we used so far to illustrate the zero allocation prob-
lem have been reasonably simple as the zero allocation
and the memory corruption were happening in the same
function. Many times, the corruption involves indepen-
dent functions in the analysed module (by independent,
we mean that each function is not either a caller or a
callee of the other one. More precisely, none of the func-
tion is in the cone of the other on the call graph). We call
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those problem multi-trace vulnerabilities. In that case,
the standard forward inter-procedural analysis is unable
to detect a memory corruption as the zero allocation and
the memory access happens on independent traces of the
call graph. Sometimes, functions are even located in in-
dependent modules. In those cases, accurate and auto-
mated detection of sparse vulnerabilities is very expen-
sive as the static analysis must cross module boundaries.
We give examples of real vulnerabilities matching those
criteria that we detected by enforcing a precondition on
the allocation function rather than on the memory deref-
erence site. This choice introduces conservative approx-
imation into our analysis but allows us to find complex
problems that would require more computational power
and implementation effort to be answered without any
false positives.

5.1 Multi-trace vulnerabilities
Vulnerabilities involving multiple functions are com-
mon. Inter-procedural analysis allows to uncover such
problems when the whole vulnerability can be character-
ized on a single program trace. In that case, the analysis
starts from a program entry point and goes deeper into
the analysed components as functions are called from the
entry point, and so on. In some cases however, a state
corruption (involving a global variable) can happen on
one trace but the real memory corruption happens some-
where else as an indirect consequence of the state cor-
ruption. This scenario is shown in Figure 4. First, a
zero allocation happens on line 6 of function SetData
as a result of a non-sanitized multiplication on line 9 of
function Syscall, an entry point of the kernel. No further
memory manipulation happens on this code path. On an-
other code trace starting with function Syscall2, the ker-
nel will lookup the zero allocated buffer and dereference
it (line 9), leading to a buffer out of bound access. No
code execution is possible here as the invalid dereference
happens on the right hand side of the expression. This
example is only used to show a concrete case where a
multi-trace vulnerability can happen. This code problem
is correctly detected by our tool thanks to the approxi-
mate characterization of this vulnerability class of using
preconditions on the allocation function.

5.2 Inter-module vulnerabilities
When analysing large programs composed of many mod-
ules and implemented over many millions of lines of
code, useful program invariants may be hard to infer
as many logical conditions are out of reach. This hap-
pens when the program events that trigger the complete
zero allocation vulnerability are distributed across differ-
ent parts of the analysed program or operating system.

1. NTSTATUS Syscall(HANDLE h, PSTRUCT1 pData)
2. {
3. PSTRUCT1 safedata = Handle2Ptr(h);
4. DWORD count;
5.
6. try {
7. STRUCT2 copy = ProbeAndRead(pData);
8. if (copy.flags & COND_FLAG)
9. count = (copy.field1 * sizeof(HDR))
10. + (copy.field2 * sizeof(DWORD));
11. } except { return ERR; }
12. return (_SetData(safedata, &copy, count));
13. }

1. NTSTATUS _SetData(PSTRUCT1 safe,
PSTRUCT2 cur,
DWORD cnt)

2. {
3. PSTRUCT2 tmparray;
4.
5. if (cur->flags & FLAG_ENABLED) {
6. tmparray = UserAllocPool(cnt, TAGS);
7. if (tmparray == NULL) return ERR;
8. safe->array = tmparray + sizeof(HDR);
9. try { memcpy(safe->array,
10. cur->array, cnt); }
11. except { return ERR; }
12. }
13. return ESUCCESS;
14. }

1. NTSTATUS Syscall2(HANDLE h)
2. {
3. PSTRUCT1 p1;
4. PSTRUCT2 p2;
5.
6. if (p1->flags & FLAG_ENABLE) {
7. p1 = Handle2Ptr(h);
8. if (p1->array == NULL) return ERR;
9. p2 = p1->array[p1->field2];
10. }
11. return ESUCCESS;
12. }

Figure 4: A multi-trace vulnerability

Figure 5 shows an example of such real-world complex
vulnerabilities that our review was able to uncover. In
the case of multi-components vulnerabilities, we can-
not afford proving invariants across different modules
implemented in many millions of lines of code. Inter-
procedural inference is likely to converge very slowly
in those cases as complex cycles can happen in the call
graph. Moreover, we want to keep our analysis compo-
sitional across operating system modules, so that global
safety can be proved by analysing components indepen-
dently. Figure 3 shows a zero-size heap allocation vul-
nerability taken from a real case that happened in the op-
erating system. In this case, the malicious remote user
could control the size of an allocation by making specific
request on a server driver. The driver then forwards the
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request to the corresponding file-system driver through
the IO manager.

The IO manager is a central component in the Win-
dows kernel as it controls the creation and forwarding of
interrupt requests between drivers. OS knowledge fur-
nished by the analyst (such as preconditions for IoDoR-
equest as indicated on Figure 5) allows enforcing spe-
cific conditional preconditions on components interface
functions. This makes it possible to catch inconsisten-
cies when they cross module boundaries, without having
to analyse deeper in the system, as to avoid a complexity
blow-up.

6 Results

This section sums up our experiment results. The table
in figure 6 contains measurements from analysis experi-
ments for some core parts of the operating system. Those
numbers are specific to the zero allocation property and
would be different for other properties or analysed com-
ponents.

COMPONENTS A B C All
LOC 1M 100K 200K 1.3M
Checked assertions 618 161 15 794
Warnings w/o annots 101 40 7 148
Found vulnerabilities 5 1 3 9

Figure 6: Analysis results on components A, B and C

The initial list of warnings contains a high amount of
false alarms. This is not because of infeasible paths that
is considered vulnerable, as HAVOC automatically dis-
cards such spurious traces. Remaining cases are those
that cannot be resolved only with intra-procedural anal-
ysis. We eliminated all other false alarms by a simple
manual inspection. For some warnings that were too
time-consuming to review, we added refined precondi-
tion on functions containing the alarm as to enforce a
specific precondition. This has for effect to remove the
original warning but make appear other new ones if the
precondition is violated in any of the caller contexts.
Most of those false alarms were eliminated by adding
annotations on few layers of functions. After a few it-
erations of this process, a very small number of alarms
remain, and we review them in deep details. We man-
aged to analyse a million lines sized component (such
as A) and uncover multiple issues at a fairly successful
rate. The tool was most effective when focused on spe-
cific API with a history of security vulnerabilities, so that
the tool can be targeted precisely without much noise as
for component C. Overall, HAVOC provided a config-
urable, transparent, and high-coverage solution for the
analysis of such security property.

1. __kernel_entry
2. NTSTATUS syscall(PVOID pParam)
3. {
4. PSETTING pitem;
5. PLARGESTR pls;
6. UINT cnt;
6. if (pParam) {
7. try {
8. pitem = (PSETTING)pParam;
9. cnt = ProbeAndReadUlong(&pitem->size) + 1;
10. pls = UserAllocPool(cnt);
11. if (pls == NULL)
12. return -ERR;
13. memcpy(pls, pParam, cnt);
14. }
(...)
15. return _InternalFunc(NULL, pls);
16. }

1. NTSTATUS _InternalFunc(PVOID p, PLARGESTR pls)
2. {
3. LARGESTR str;
4. if (p == NULL) {
5. str.buff = UserAllocPool(pls->Length + 1);
6. if (str.buff == NULL) return -ERR;
7. try {
8. str.Length = pls->Length;
9. memcpy(str.buff, pls->buff, str.Length);
10. str.buff[str.Length] = 0;
(...)

Figure 7: Kernel zero allocation vulnerability

One fixed elevation of privilege vulnerability in
the kernel is shown in Figure 7. In this example, the
code execution flows from function syscall (one of the
kernel entry point) to an internal kernel function. An
intermediate large string is allocated with size value
passed from user-mode via the pParam parameter. As
the parameter is casted to a PSETTING pointer type,
one of its field is validated via the ProbeAndReadUlong
kernel macro that ensures the validity of this pointer
variable. This check is indeed necessary as to forbid
the user-mode parameter to point on a kernel memory
address and potentially lead to further kernel corruption.
Probe functions triggers an exception if the supplied
pointer is invalid, which is why a try block is necessary
when reading the data. Additionally, a data copy is
performed by the Probe call so that no time-of-check
/ time-of-use concurrency vulnerability can happen. A
problem happens because the value pointed by this valid
address is used without any bound checking, allowing an
integer overflow to happen on the count variable. The
direct consequence of our computers’ modulo arithmetic
is to trigger a zero-sized allocation, that is not caught by
error checking at line 11 since the call returns a valid
heap chunk pointer. A memory copy then happens with
a zero byte size, which is a no op. Then the allocated
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Figure 5: Inter-module zero allocation vulnerability

pointer is passed to the internal function. There, a new
LARGESTR object is created whose buffer is allocated
with an unknown size (as variable pls points on an
uninitialized memory chunk). In practice, an attacker
may use a heap spraying attack as to place untrusted
data in the next contiguous heap chunk. A memory
copy of uncontrolled size can then corrupt the heap
with untrusted data. This type of vulnerability generally
get patched with a higher priority as they can allow
untrusted code execution.

Other vulnerabilities can happen when the charac-
terizing class is slightly different than a zero allocation.
We make explicit such limitation of the presented anal-
ysis in the following section about near-zero allocations
vulnerabilities.

7 Near-zero allocations vulnerabilities

The previous analysis is only suitable to detect vulnera-
bilities when the allocation size is exactly zero. Some-
times however, security problems arise when the alloca-
tion size is not zero but in the neighbourhood of zero.
Such problem can be found when the size variable is
incorrectly handled even though no zero allocation can
happen. We found several of such problems in the pres-
ence of additional code defects. Let us show one remote
vulnerability that we found by code review of allocation
sites in a user-land client software. In this case, the al-
location size is bigger than (but in the neighbourhood
of) zero, as a constant small amount of padding is al-
ways added to the size before the call to the allocation
function. However, when the size variable does not ac-
count for this padding, a de-synchronization happens that
is naturally more difficult to handle for developers.

The code in figure 8 is taken from a network client

1. BOOL DecodeStr(PCHAR input, UINT sz, PSTAT st)
2. {
3. st->newcnt = GetFieldLen(input, sz);
4. st->tmpbuf = malloc(st->newcnt + 2);
5. if (NULL == st->tmpbuf)
6. return EOOMEM;
7. memcpy(st->tmpbuf, input, st->newcnt);
8. return (HdrStringConvert(st));
9.}

1. BOOL HdrStringConvert(PSTAT st)
2. {
3. if (NULL == st->finalbuf) {
4. if (0 == st->newcnt) return ERR;
5. st->finalbuf = calloc(st->newcnt);
6. if (NULL == st->finalbuf)
7. return EOOMEM;
8. } else {
9. UINT off = strlen(st->finalbuf);
10. st->finalbuf = realloc(st->finalbuf,

st->newcnt +
off + 1);

11. if (NULL == st->finalbuf)
12. return EOOMEM;
13. *(st->finalbuf + off) = SEP_CHAR;
14. off++;
15. }
16. switch (st->tmpbuff[0] & 0x7F) {
17. case ASCII:
18. ConvertFromASCII(st->tmpbuff + 1,

st->newcnt - 1,
st->finalbuf + off);

(...)

Figure 8: Near-zero allocation vulnerability

software manipulating untrusted data. On line 3
in function DecodeStr, a length value field is read
from a network input and stored in 16 bits variable
st->newcnt . The function then allocates the corre-
sponding memory size, adding two bytes. Note that no
integer overflow can happens as the addition operation
happens on 32 bits even if st->newcnt is on 16 bits.
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The newly allocated string is then passed to function
HdrStringConvert for conversion into a suitable format
for internal storage and manipulation. This second
function operates differently depending on the state of
the st->finalbuff variable. Indeed, multiple calls
to DecodeStr in a row will make the newly received
string concatenated to the previously converted one,
separating the two by a special character SEP CHAR
. In the case where st->finalbuf is NULL, the
new count variable is properly checked for zero and
an error is returned in that case. However, when the
final buffer is not empty, a reallocation will happen
without checking the value of the new counter. If the
st->newcnt is zero, an integer underflow will happen
on line 18 when the variable is decremented (as to reflect
the special first byte of the string that contains the string
encoding information). A buffer overflow happens in
ConvertFromASCII function as a big amount of data is
written out of bounds of the final buffer. Exploitation
of this vulnerability depends on whether an attacker is
able to control the uninitialized data contained in the
memory chunk allocated at line 4 of function DecodeStr.
Since the vulnerable code is located in a network han-
dling code and that no memory zeroing happens when
freeing heap memory chunks, conditions are likely to be
reunited to trigger unauthorized remote code execution.

It is harder for an automated analysis to find such
vulnerabilities as the allocation size is not exactly
zero (since it is padded with a constant size value 2,
making the required safety precondition always true).
Additionally, a reentrancy analysis is required to reach
the vulnerable context in function HdrStringConvert.
Such characteristics explain why a simple zero check is
insufficient to uncover those subtle vulnerabilities.

8 Related work

There are two distinct areas of related work. The first
one is from the software verification community. A
number of formal verification tools has been success-
fully deployed in the software industry. Either based on
type qualifiers checking [43] [33], model-checking [27],
data-flow analysis [31] [32] or fuzz testing [3], they
found dozens of vulnerabilities, many of those are not
specifically targeted on security relevant properties.
Theorem proving has been used on source code to
ensure user/kernel pointer validation [26], correct
locking schemes [28] or the absence of NULL pointer
dereferences [39]. Other experiments were made to
detect integer overflows [40] [41]. Many more machine
code analysis frameworks (either based on theorem
proving [34] or data-flow analysis [38] [37] [36] [42])
are still at early stages of experimentation on large

industrial software.

The second group of related works is from the of-
fensive and defensive software technologies (known
as exploit development and mitigation) community.
Since initial publications of heap exploitation tech-
niques [8] [9], a new generation of heap-aware security
practitioners has extensively researched the topic of
untrusted code execution in the presence of user-land
heap management defects [10] [11] [12]. Pioneer
address space layout randomization (ASLR) and
non-execution protections [2] made heap exploitation
more challenging. Allocator implementations were
enforced by adding consistency checks during chunk
unlinking operations, thus breaking known exploitation
vectors. A second generation of heap exploitation
techniques was developed [14] [15] [19] [17] targeting
specific weaknesses that were left unchecked in new
allocators. Many more techniques were published on
kernel allocator attacks [16] [20] [21] on various OS.
Modern non-execution protections can now benefit
from hardware-level support [9], lowering the perfor-
mance impact induced by software-level protections.
As cloud-computing is emerging and web browsers
are more exposed targets, new advanced exploitation
techniques now make use of fine grained heap spraying
in JavaScript [18] and ActionScript JIT compiler pre-
dictable behaviours [23] to take advantage of memory
bugs even in the presence of advanced protections such
as DEP and ASLR.

9 Conclusion

We uncovered new vulnerabilities in large and complex
low-level software by performing a straightforward but
systematic zero value analysis of specific operating sys-
tem functions parameters. Using the HAVOC analyser
made it possible to filter a major part of the problem
space while keeping a small rate of false positives
compared to path-insensitive implementations of formal
verification. Such methodology is directly actionable
during the industrial software development life-cycle
and allows keeping a higher assurance of the absence of
such problems in the future.

The author would like to thank Shuvendu Lahiri
for his guidance on using HAVOC and writing this
article. Thanks also to Mark Wodrich, Thomas Gar-
nier, Matt Miller, and Ken Johnson for their feedback
and assistance on security vulnerability research in
Microsoft.
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