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Abstract—A grand challenge in computer programming is the
formal verification of dynamic properties of programs execution.
Verification frameworks such as Proof-Carrying Code (PCC)
enforce policies and memory models to prove that programs
cannot go wrong. Due to the use of automated deduction
techniques on models with machine abstraction, low-level details
of the program execution can be changed without invalidating the
formal proof. We capture the notion of Weird Machines in PCC
to formalize the unspecified execution in programs whose proofs
do not sufficiently enforce key properties to disallow execution
of untrusted computations. We discuss ideas to improve existing
verification systems so they are more resilient to weird machines.

I. INTRODUCTION

Proof-Carrying Code (PCC) [Nec97] and other
computational verification systems [XL12] are frameworks
in which untrusted programs can be verified to be safely
executed according to the type and inference rules used to
enforce formal contracts, checked either before (or during)
program execution. In the last few decades, a great amount
of effort has been dedicated to verify the safety of critical
programs from embedded real-time systems to common
software part of major operating systems [KEH+09]

Proof-Carrying code comes into two main flavors: the
original Proof-Carrying Code [Nec97], and the Foundational
Proof-Carrying code (FPCC) [App01]. It is expected in such
systems to make use of type rules either directly in the axioms
of the system (therefore making the system strongly tied to the
type system), although FPCC [App01] forces each type rule
to be first defined from ground logical axioms before they can
be used in proofs. A tempting assumption for PCC is to use it
as an integrity system where the program is ensured to satisfy
its specification as long as its proof is independently verified
by the executing system. However, the original goal of PCC
does the capture the intent that the system only executes
what the specification enforces, and nothing else. This is
shown in the set of original PCC articles where invariants
are checked at specific program points by introducing a
new virtual instruction INV whose parameter is an assertion
that must be verified by the program in that context so

that execution can continue. PCC does not capture whether
the program also executed additional instructions that were
not accounted for in the specification. We say that PCC is
vulnerable to weird machines, computational artifacts (some
say gadgets) where additional code execution can happen
in proved programs and will escape the program specification.

The original definition of Foundational Proof Carrying
Code (FPCC) [App01] is defined by semantic rules for an
abstract machine instruction set, and contains additional
conditions capturing that parts of the machine contexts
(memory, registers, etc) are not affected by instructions.
This is characterized in FPCC by using memory contexts
to track values that have changed during the execution of
the typed inference rule. As such, FPCC is more resilient
to weird machines than PCC. Additionally, FPCC suggests
the use of type-preserving compilers, such as the one
in CompCert [Ler06], where proofs in source code can
translate to proofs on machine code. This is to protect against
invalidating the safety invariants in an untrusted or incorrect
compiler. Such end-to-end certification systems offer fewer
opportunities to go wrong than traditional PCC-style systems.

Nonetheless, attacks on FPCC can happen when the
memory model, the machine abstraction, or the policy itself
are incomplete or incorrect. In attacks against memory model,
an attacker takes advantage of the fact that real machine
operations are not captured in the PCC machine semantics.
For example, the order of bits in the encoding of data types
(such as integers, pointers and bit vectors) is specified by
the memory model. The CompCert memory model [XL12]
represents memory at the byte level and models the sign of
integers. It can deal with invalid computations acting on a mix
of pointer and integer variables. For example, single bytes
of pointer typed values in CompCert cannot be manipulated
directly, thus capturing errors due to partial pointer overrides
happening during memory corruption issues. On the other
hand, no bit field algebra is available besides the one allowing
conversion from integer to float (double) type such as in
the presence of union types in the C language. As such, the
model fails to capture cases where bit field of 31 bits are cast



from/to 32 bits integers. Since variable-length bit fields are
not supported in the memory model, and it is unclear how to
define a program that manipulates such objects in CompCert,
as this can be the case in common programs.

The machine abstraction is used to simplify the real
machine and forget details that are not important to perform
proofs. If the (F)PCC framework is driven by a fixed set
of invariants, then such loss of precision can be avoided
by introducing appropriate representations for resources and
instructions and keep soundness when verifying the invariants
of the contract. However, when faced to an attacker with
the ability to inject code in the program, the proof system
can be built around specific properties. Therefore, any used
abstraction is the opportunity for an attacker to introduce
uncaptured computations or side effects that are not accounted
for in the proof. As such, failure to capture some of the
real machine specification introduces potential to perform
computations that will discover unintended state space of the
program.

A central trait of architecture in both PCC and FPCC
resides in the underlying formal system used to verify
logic formulae encoding the desired invariants of programs.
In PCC, a subset of first order predicate logic as well as
application-dependent predicates are predominating. In FPCC,
Church’s Higher Order Logic (HOL) is used, giving proofs
the ability to reason on function types (as well as record
types). None of these logic take resource into account, and it
is possible to define proofs in multiple ways depending on
what order of application is chosen on hypothesis (in lambda
calculus jargon: multiple evaluation strategies can be chosen
to reduce the proof term down its normal form). For example,
proving the type of a record r : A × B can be proved first
by proving π1(r) : A then π2(r) : B, or by first proving
π2(r) : B then π1(r) : A. The order of evaluation is not
specified by the formal logic. Moreover, there can be unused
hypothesis, or hypothesis can be used multiple times. This
introduces an opportunity for attackers to perform hypothesis
reuse and compute additional operations without invalidating
proofs. Other systems based on linear logic [Gir87] attempted
controlling the resource management aspect of such proofs
directly in the logic [PP99], though no complete theory
or implementation of linear proof carrying code has been
established as of today.

Additional policies can be used to enforce structural
constraints on programs, and can also incur unwanted
behavior when data and code can be intermixed (sometimes
on purpose to support self-modifying code). Such policies
are dangerous not only when code can be rewritten but also
when data can be executed. This gives a full cycle of code
generation primitives for an attacker to fool the security
system. Therefore, we discourage the allowance of such
primitives when real program safety is expected.

This article discusses the need for verification systems
aimed at understanding attacker potential and minimizing
opportunities of unspecified behavior in verified programs.
Though the case is made using the example of Proof-Carrying
Code, any formal verification system introducing abstraction
in proofs is exposed to weird machines and other uncaptured
computations.

II. ON LIMITS OF PROOF-CARRYING CODE

Proof-Carrying Code (or PCC) is a framework for the
verification of safety policies applied to mobile, untrusted
programs. PCC relies upon the fact that, while the construction
of a proof is a complex task involving the code compiler and
a Verification Condition generator (VCGen), verification of
proofs is easy enough given the proof and the program.

Mechanisms of PCC are captured using type rules of the
simple form:

ρ � o : T

where ρ is the register state containing the values of
registers r0, r1, r2, ..., rn, and o is a program object of type
T down to individual expressions and (constant) variables.
Type rule derivations employed to represent the program
constitute the proof that the program executes accordingly
to its type specification. Types can be used to prove that
an address is valid, read-only, or that a result register holds
the expected value at chosen program points given certain
inputs of the verification procedure. As such, proof-carrying
code in its simple form corresponds to program property
checking, where particular constraints are expected to be true
and consistent at a given program point (for example, at the
precondition of a particular API, or at the header of a loop,
etc).

We make the following remarks about PCC and related
systems:

• We warn of a potential misconception that PCC could
be used for lightweight program integrity. We explain
why using PCC for program integrity is insecure even
though PCC employs a sound proof system to verify
mobile proofs.

• We claim that the problem of unspecified computations is
independent of the chosen proof construction, encoding
or verification algorithms

• We note that the described problem is not specific to
either particular programs or policies.

• We argue that the use of abstractions in proofs gives up
potential for attackers to introduce additional malicious
program parts whose execution do not invalidate original
proofs but still perform other unspecified operations
together with the normal proved program behavior.



Only specific families of proof systems taking resources
into accounts have the ability to express proofs in a way that
can avoid unwanted computations. In particular, the ability to
control precise resource creation and consumption is central
to desired security proofs. For example, such systems could
be tentatively constructed from linear and affine logic [Gir87]
or game semanatics [HO00] where hypotheses contexts
precisely track the number of available resource instances.

Our goal is to illustrate that rogue programs can satisfy
legitimate proofs as long as the same properties are provably
observed at predefined chosen program points. The Global
Safety Proof for a program is expressed as follow in PCC:

SP (Π, Inv, Post) = ∀rk :
∧
i∈Inv Invi ⊃ V Ci+1

where the verification condition, constructed from the veri-
fied program since the beginning of the ith procedure segment,
implies that the enforced invariant is true at the end of the
procedure segment i+ 1 .

A. The Proof aliasing problem

The limits of proof-carrying code are illustrated by the
creation of another program Π′ which also verifies the proof
originally made for Π :

∃Π′ : SP (Π′, Inv, Post)

We call this phenomenon the program proof aliasing or PPA
problem. The PPA problem has macro-level consequences for
the whole program proof as expressed in PCC since there is
now an equivalence relation such as:

Π ≡ Π′

,
SP (Π, Inv, Post) ⇐⇒ SP (Π′, Inv, Post)

Two programs are proof-aliased when one satisfy the proof
if and only if the other does.

B. Perfect Proof-Carrying Code

One may want to define a perfect version of PCC where
the PPA problem does not arise. We call this version PCC≡α

to distinguish it from PCC as originally defined. The absence
of proof aliasing for programs leads to defining the strongest
formulation for the safety condition that avoids unwanted
computations. Such formalization states that there is a unique
program satisfying a given safety proof:

∃!p such that SP (p, Inv, Post)

Under this definition, one cannot construct a proof that
is applicable to two programs. This very strong statement
is equivalent to the existence of an isomorphism between
low-level programs and their proofs. Such definition does
not leave any room for small optimization or other changes
that are otherwise harmless for the program or its proof. A
weaker perfect safety condition, easier to employ but still

avoiding unwanted computation, would allow used resources
(such as memory or register instances) to be different while
allowing the same proof (modulo renaming):

Π1 ≡α Π2

,
SP (Π1, Inv, Post)⇐⇒ SP (Π2, Invα, Postα)

where Invα (resp. Postα ) are the original invariants
(respectively post-condition) in the safety proof SP after
applying the same α-renaming used to obtain P2 from P1 .
Proof-equivalence modulo α-renaming from P2 to P1 can be
expressed similarly. This alternate definition can be useful
when resources used in proofs are identified by indexes,
addresses or offsets rather than names.

A limitation to this approach is that any two structurally dif-
ferent programs (like two program with different control flows)
must have strictly different proofs (and different proof trees)
even when these programs are observationally equivalent. This
captures the intuition that the amount of resources needed to
satisfy a specification should be minimal and well identified
for each program pretending to satisfy it. Unlike such perfect
system, a realistic system should aim at finding equivalence
classes of programs where the same proof is acceptable for
two different elements as long as certain properties of interest
are guaranteed without loss of precision.

III. THE NATURE OF UNTRUSTED COMPUTATIONS

An original approach to modeling attacker potential is
by formally studying the weird machines (WM) [BLP+11]
intending to describe the security exploits slipping through
verified programs. For simplicity, the use of the axiomatic
semantic ala Hoare [Hoa69] allows us to study the machines
independently of the chosen instruction set.

A. Weird control-flow

Let CFG =< {V }, {E} > be a usual definition of a control
flow graph made of a set of vertices and edges (with the edge
set E : V → V ) .
Vi ∈ V = (i1, i2, ..., in) is a vertice in the CFG such as a

basic block made of a list of instructions).

We define a family of projections Πj : V → V such
that Πj(Vi) = Vi′ = {ij} a singleton obtained by unitary
projection on the list of instructions of the basic block.

Let ΠS(VS) : V → V such that V ′S = {ij∈S}
= {Vj1, Vj2, ..., Vjn} with {j1, ..., jn} ∈ S such that
j1 < ... < jn .

be a partition obtained by bigger (union of) projections. The
sequence of instructions obtained by union of projections is
guaranteed to be in order, but does not have to be contiguous
over V.



Some examples of projections on S are V-suffixes, or
more general sub-sequences. Such sub-sequences can be
contiguous or non-contiguous. Projections can be V-suffixes
as in the case where new basic blocks are created from the
end of existing ones by skipping instructions at the beginning
of blocks. They can also be sub-sequences of basic blocks
in which not all instructions are executed in the block, but
where executed instructions are guaranteed to be found one
after the other. We call contiguous sub-sequences of V the
result of these projections. These can arise if an exception
is triggered and not all instructions in the basic block are
executed. We also distinguish non-contiguous sub-sequences
of V where executed instructions are not guaranteed to be
contiguous in the address space of the program. This is the
case for architectures with conditional instructions whose
execution depends on some internal state of the processor
such as status flags, content of translation look-aside buffers
used in linear to physical address translation, or other state
that may or may not be directly accessible to the program.

We define the Weird Control-Flow Graph (WCFG) as:

WCFG = {CFG}
⋃

{〈V ′, E′〉}

such that E′ = W → V ′ with W ∈ V (CFG) and
V ′ /∈ V (CFG) . By definition of the WCFG, E′ /∈ E . Note
that a WCFG cannot exist if E = E′ since any extra state
would not be reachable on the WCFG. Therefore, E′# >> E#

B. Weird computations

Weird computations can be defined using axiomatic
semantics of Hoare as interpretation over the Weird Control-
Flow Graph (WCFG). We note {P}c{Q} to express the
partial verification conditions when a code fragment c
terminates with given postconditions Q when provided with
initial preconditions P. Axiomatic semantics of a program is
given by applying composition rules on the semantics of its
individual fragments.

{Pre} < V > {Post}
= {Pre} < i1; i2; ...; in > {Post}
= {Pre} < i1 > {Post1}... < in > {Postn}

Each Pre and Post are invariants conditions (first order logic
formulae) locally verified at each state of the execution.

We can express, very much like the tape of a Turing
machine, the values in vs satisfying the Invariant Inv, where
VS is a value store and vs are the values in the store.

vs = (d1, d2, ..., dn) : V S � Inv

Value stores can represent registers and memory cells.
While it is easier to reason about states using invariants at
the abstract level, values allow to map invariant to concrete
execution states of the program, may they be legitimate
(expected) states or unexpected and unspecified weird states.
Depending on the invariant, there may be a single, multiple,

or no valuation satisfying it. The axiomatic semantics on
vertices of the WCFG can be seen as:

{Pre} < V ′ > {Post}
= {Pre}ΠS(< i1; i2; ...; in >){Post′}
= {Pre} < iα > {Post′} < iβ > {Postβ} < ... > {Postω}

where {α, β, ..., ω} ∈ S such that α < β < ... < ω .

Note: {Postω} is a weird state ↔ ∃ΠS such that
{Postω} * {Post} .

C. Weird executions

We now abstract the executable code to focus on the
sequence of states produced by executing this code.

A weird sequence s ∈ S = Postα, Postβ , ..., Postω

is a sequence of invariants verified by executing paths on
the WCFG. We can represent the weird sequence using
valuations satisfying all the intermediate invariants, rather
than the invariant themselves:

vsα � Postα

vsβ � Postβ

...
vsω � Postω

In order to reach one such weird state, we define a distance
function : δ : S × S → N and we say that a weird sequence
converges if:

δ(Postα, F ) > δ(Postβ , F ) > ... > δ(Postω, F )

e.g. the distance between the current weird state and the
desired final weird state F keeps diminishing.

ex: δ(S1, S2) =
∑
i di ∈ S1 ≡ di ∈ S2

Final states can be chosen depending on the desired
end state for an attacker. For example, a final state can
be defined as a state where the values of specific registers
is controlled (such as the instruction pointer register).
Sometimes, an attacker will choose desired final states that do
not necessarily involve full untrusted execution, such as these
allowing to read or write specific variables. For example, one
may want to read credential information from a program, or
force the program to accept a successful authentication even
though no valid credentials have been entered.

The distance metric between two states can be defined
(without loss of generality) as the number of equivalent values
in the value stores representing each state. State equivalence
can then be defined as:

S1 ≡ S2 ⇐⇒ ∀di ∈ S1,2 : di1 = di2



If δ −→ 0 , the weird sequence is said to converge.
Otherwise, the sequence diverges (that is, it comes back to
a non-weird state, or may simply diverge in the weird state
space if not enough computational power is given to reach
desired final weird states)

IV. COMPUTATIONAL MODELS OF TRUST

Objects like weird machines are convenient to model
untrusted code execution but a complete definition of weird
machines remains to be given. A weird machine should
be defined in terms of push-down automata to accurately
represent the stack-based control mechanisms used in
common security exploits. For example, overwriting a return
address or an exception handler to redirect control flow
can be modeled as a reachability problem on a push-down
automata. Moreover, features of transducers, in particular
the ability to reason on program output, is necessary to
develop compositions of traces where a first execution is
used to obtain some information about the program (such
as variable values or internal address space information)
and a subsequent trace is used to perform operation based
on this guessed information. For example, an information
disclosure vulnerability may be used to guess the location of
existing legitimate instructions that will be later be executed
to perform new operations. This corresponds to reordering
valid computations within a program to reach new states.

A Weird Machine WM =< P,O,Σ,Π,∆,Ψ > can be
used where:

• P is the player e.g. the attacker machine.
• O is the opponent/environment modeling the program

under attack.
• Σ is the concrete language of the attacker output tape

(which coincides with the program input tape).
• Π is the concrete language of the program stack.
• ∆ is the concrete language of the program output tape

(which coincides with the attacker input tape).
• Ψ is the symbolic language modeling the player and

opponent heap states.
in which the attacker transition function δ(O,∆,Ψ) ∈ Σ

and the target program transition function φ(P,Σ,Π,Ψ) ∈ ∆
are used to make progress on the WM.

Such machines have remarkable properties:

• The WM is a combination of two transducers (a.k.a.
input/output automata) where the input tape of one trans-
ducer corresponds to the output tape of the second. As
the attacker can feed input to the program, the attacker
machine is represented as the player while the program
is the opponent. Execution on such machine is a game
between player and opponent, unlike usual computational
models where the program under execution is central and
attacker is not formally modeled.

• The WM is a hybrid concrete / symbolic abstract ma-
chine. Concrete representation is retained to model input
and output behavior as well as the stack behavior given
the central role played by the stack when storing con-
trol records. In the other hand, maintaining all possible
concrete heap configurations for a program is intractable.
Instead, we choose to represent heap state symbolically
using a formal logic language (such as, and without loss
of generality, first order logic). As such, WM are concrete
symbolic abstract machine or concolic machine.

• The WM construct is generic and parameterized with a
target language semantics S (interpretation rules of the
target program) and a background predicate BP (the set of
symbolic assumptions used for heap state management)

Unlike other intermediate forms like Boogie, a weird
machine representation should maintain a concrete program
stack as to retain machine-level encoding for scoped execution
and continuations, so that common attack patterns like return
oriented programming can be modeled. Following patterns
of reactive programming using the two transducers will
allow for input/output characterization of attacks where
information disclosure or multiple interaction exploits are
performed on the system. In such weird machines, attacker
knowledge can be represented by what hypothesis are known
by the player and how these can be used to guide further
target program analysis and execution. It is important to
split the target program knowledge base and the attacker
knowledge base since multiple security protections aims at



hiding internal program state from attackers. Therefore, not
all symbolic target program state is known by the attacker
and splitting environment is meant to represent this constraint.

A more ambitious problem is to define a version of proof-
carrying code that is restricted enough to avoid weird machines
but relaxed enough to allow equivalence classes between
programs, so that some legit modifications of the program
(like optimizing transformation) may be performed without
invalidating the proofs. Such system could possibly use prin-
ciples of linear logic under the hood, so that resources are
precisely accounted for. For example, it should be forbidden
for programs to compute intermediate results that are not
reused, or that are reused multiple times. While the former
problem can be approach using program simplification such
as dead-code elimination, the latter can be difficult if the
program intent is to store results of computations for later
reuse as in dynamic or divide and conquer programming. It
becomes necessary to measure operations performed on these
value stores to ensure that only intended code gets executed
and no extra computational power is given to attackers.

V. CONCLUSION

The Weird Machines in verification systems such as Proof-
Carrying code take advantage of equivalence classes intro-
duced by abstractions in program proofs. Proof-Carrying code
and related systems guarantee that programs satisfy safety
properties but does not guarantee the absence of other side
effects that may not invalidate the main safety proofs. Abstrac-
tion in proof systems may surrender the ability to distinguish
unintended program computations from intended ones, and
established proofs may not guarantee that the system is free
from other contingent behavior remaining uncaptured by the
safety conditions. We therefore warn that such verification
systems should carefully be considered when computational
integrity properties are meant to be preserved.
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