
Heap Models For Exploit Systems
IEEE Security and Privacy LangSec Workshop 2015

Julien Vanegue

Bloomberg L.P.
New York, USA.

May 28, 2015



Big picture : The Automated Exploitation Grand Challenge

I A Security Exploit is a program taking advantage of another
program’s vulnerability to allow untrusted code execution or
obtention of secret information.

I Automated Exploitation is the ability for a computer to
generate an exploit without human interaction.

I The Automated Exploitation Grand Challenge is a list of
core problems in Automated Exploitation. Most (all?)
problems are unsolved today for real-world cases.

I Problems relate to: Exploit Specification, Input Generation,
State Space Representation, Concurrency Exploration,
Privilege Inference, etc.

I The complete challenge is described at:
http://openwall.info/wiki/_media/people/jvanegue/

files/aegc_vanegue.pdf

http://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf
http://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf


Today’s topic: Heap layout prediction - AEGC Problem I

Disclaimer: this is work in progress research.

Tooling is still in development (no evaluation provided).

Presentation acts on a simplified heap.

Heap can be non-deterministic, we focus here on the
deterministic heap behavior only.



Why is this an important problem?

I Nowadays, heap-based security exploits are common intrusion
software.

I Exploit mitigations have made writing these exploits an
expert’s job.

I Heap allocator implementations are vastly different across
Operating Systems.

I Current research on heap shape analysis does not address
internal heap allocator semantics.

I There is close to no formal research on faithful heap
layout abstractions.

I Agenda: Formalize generic heap exploitation technique based
on layout prediction.



Reminder: Heap vulnerability classes

I Heap-based buffer overflow - Overwrite adjacent memory
chunk.

I Double free / Invalid free - Free data that is not a valid
allocated chunk.

I Use-after-free - A pointer that was freed is cached and
incorrectly used.

I Information disclosures - An attacker can read the content
of memory.



Reminder: Heap-based buffer overflow

1: char* do strdup(char *input, unsigned short len) {
2: unsigned short size = len + 1; // May overflow short capacity
3: char *ptr = malloc(size); // allocate small amount of memory
4: if (ptr == NULL)
5: return (NULL);
6: memcpy(ptr, input, len); // Buffer overflow may happen
7: return ptr;
8: }



Reminder: Invalid free

1: int posnum2str(int x) {
2: char *result;
3: if (x ≤ 0) goto end; // Early exit
4: result = calloc(20, 1);
5: if (result == NULL)
6: return (NULL);
7: if (num2str(result, x) == 0)
8: return (result);
9: end: free(result); // May free uninitialized pointer

10: return (NULL);
11: }



Reminder: Use-after-free

1: char *compute(int sz) {
2: char *ptr = malloc(sz);
3: if (ptr == NULL) return (NULL);
4: int len = f(ptr); // Assume f will free ptr under some conditions
5: ptr[len] = 0x00; // ptr was already freed!
6: return (ptr);
7: }



Reminder: Information disclosure

Require: sock : Valid network socket
Ensure: True on success, False on failure
1: char buff[MAX SIZE]
2: int readlen = recv(sock, buff, MAX SIZE);
3: if (readlen ≤ 0) return False;
4: rec t *hdr = (rec t *) buff;
5: char *out = malloc(sizeof(rec t) + hdr->len);
6: if (NULL == out) return (false);
7: memcpy(out, buff + sizeof(rec t), hdr->len); // Read out of bound
8: out->len = hdr->len;
9: send(sock, out, hdr->len + sizeof(rec t)); // Send memory to attacker

10: free(out);
11: return True



Original AEGC problem I harness test

1: struct s1 { int *ptr; } *p1a = NULL, *p1b = NULL, *p1c = NULL;
2: struct s2 { int authenticated; } *p2 = NULL;
3: F() {
4: p1a = (struct s1*) calloc(sizeof(struct s1), 1);
5: p1b = (struct s1*) calloc(sizeof(struct s1), 1);
6: p1c = (struct s1*) calloc(sizeof(struct s1), 1);
7: }
8: G() { p2 = (struct s2*) calloc(sizeof(struct s2), 1); }
9: H() { free(p1b); }

10: I() { memset(p1a, 0x01, 32); } // Buffer overflow
11: J() { if (p2 && p2->authenticated) puts(you win); } // Go here
12: K() { if (p1a && p1a->ptr) *(p1a->ptr) = 0x42; } // Avoid crash

Goal: Automate heap walk = { F(); H(); G(); I(); J(); }



What do these vulnerabilities have in common?

I In heap overflow case, attacker expects to place an interesting
chunk after the overflowed chunk.

I In use-after-free case, attacker expects to place controlled
chunk in freed memory before it is used incorrectly.

I In invalid free case, attacker expects to place controlled heap
memory at location of invalid free.

I In information disclosure, attacker expects to place secret in
heap just after chunk allowing disclosure.

I In harness test of Problem I (previous slide), we expect chunk
p2 to be reusing p1b’s memory after it was freed.

I Summing up: Exploitation depends on location of chunks
relative to each others.

I What is a good layout abstraction for the heap?



Studied allocators

I Doug Lea’s malloc (DLMalloc) - Linux.

I PTMalloc (DLMalloc + thread support) - Linux.

I Windows heap (including Low Fragmentation Heap).

I NOT studied: JEmalloc (FreeBSD / NetBSD / Firefox).

I NOT studied: Garbage Collection (Mark-and-Sweep algorithm
etc).



Simplified informal heap allocation algorithm

1. Try to use one of the cached (last freed) chunks.

2. Try to find a fitting chunk in current free chunks list.
I If found and requested size exceeds found chunk size and

remainder is bigger or equal than the minimal chunk size, split
found chunk and put remainder in appropriate list (the fast
cache list if there is one, otherwise in the list of corresponding
size range).

3. Try to coallesce two free chunks from current free list.
I If coallesced chunk now big enough, also split coallesced chunk

as in step 2.

4. If still fails, try steps (2,3) with each free list in order.

5. If still fails, try to extend the heap.

6. Otherwise, return an error (NULL).



Formal heap definition

H = (L≤, Γa, Γf ,ADJ,Top) where:

I L≤ = (l1, l2, ..., ln) is a totally ordered set of lists of available
memory chunks. Each list holds free chunks for a given size
range.

I l = (c1, c2, ..., cn) are individual memory chunks in list l .

I Γa : l → int is a counter of allocated chunks for a given size
range.

I Γf : l → int is a counter of free chunks for a given size
range.

I ADJ : c × c → B is the adjacency predicate (true if chunks
are immediately adjacent).

I Top is the current chunk in H with the highest address.



Heap semantics

Heap primitives:

(F)ree : A memory chunk is freed.
(R)ealloc : A memory chunk is extended.
(A)lloc : A memory chunk is allocated.
(C)oallesce : Two memory chunks are merged.
(S)plit : A big memory chunk is split into two smaller ones.
(E)xtend : The heap is extended by a desired size

Heap transition system:

H′ ←− F p H
(H′, p2) ←− R p1 sz H

(H′, p) ←− A sz H
(H′, p3) ←− C p1 p2 H

(H′, p2, p3) ←− S p1 off H
(H′, p) ←− E sz H



Key ideas

1. There are two levels of semantics: physical and logical:

I The physical semantic is concerned with the adjacency of
chunks in memory.

I The logical semantic is concerned with the population of
chunk lists.

I Our goal is to reconcile physical and logical heap
semantics.

2. Heap primitives must include user interactions (F, R, A).

3. Core internal heap mechanisms are defined as first class
primitives (C, S, E).

4. An Adjacency predicate ADJ (used in S and E only) defines
the physical semantic. Everything else is house cleaning and
defines the logical semantic using two counters per list.

5. Defining the heap transition system allows us to reduce the
problem to a reachability algorithm.



Prerequisite: Heap List Fitness algorithm (here best fit in
ML-style syntax)

1: let best (cur:Chunk)(sz:int)(cand:Chunk) =
2: if (size(cur) ≥ sz and
3: (cand = ⊥ or (size(cur) - sz ≤ size(cand) - sz)))
4: then cur else cand;;

5: let rec findfit (choice: a → b → c → d)(l:list)(sz:int)(cand:Chunk) in
6: match l with
7: | [] → cand
8: | [cur::tail] → (findfit tail sz (choice cur size cand));;

9: let rec FIT Lists sz = match Lists with
10: | [] → ⊥
11: | [cur::tail] → let res = (findfit best cur sz ⊥) in
12: match res with
13: |⊥ → (fit tail sz)
14: | cur;;



The FRACSE calculus (part 1)

size(p) = x FIT(H.L, x) = l1

FREE(p)

Γ′a[l1]← Γa[l1]− 1 Γ′f [l1]← Γf [l1] + 1

FIT(H.L, x) = l1

p = ALLOC(x)

Γ′a[l1]← Γa[l1] + 1 Γ′f [l1]← Γf [l1]− 1

size(p) = x FIT(H.L, x) = l1 FIT(H.L, x + e) = l2

p2 = REALLOC(p1, x + e)

Γ′a[l1]← Γa[l1]− 1 Γ′f [l1]← Γf [l1] + 1 Γ′a[l2]← Γa[l2] + 1 Γ′f [l2]← Γf [l2]− 1



The FRACSE calculus (part 2)

size(p1) = x1 size(p2) = x2 FIT(H.L, x1) = l1 FIT(H.L, x2) = l2 FIT(H.L, x3) = l3

p3 = COALLESCE(p1, p2)

Γ′f [l1]← Γf [l1]− 1 Γ′f [l2]← Γf [l2]− 1 Γ′f [l3] = Γf [l3] + 1

size(p) = x FIT(H.L, x) = l1 FIT(H.L, x − o) = l2 FIT(H.L, o) = l3

(p1, p2) = SPLIT(p, o)

ADJ(p1, p2) Γ′f [l1]← Γf [l1]− 1 Γ′f [l2]← Γf [l2] + 1 Γ′f [l3]← Γf [l3] + 1

FIT(H.L, x) = l

p = EXTEND(x)

ADJ(Top, p) Γ′f [l ]← Γf [l ] + 1 Top ← p



Pitfalls
I There can be multiple heaps (ex: one per thread). Heap

selection is not defined in the FRACSE semantics. As FIT
uses a heap parameter, it can handle multiple heaps easily.

I There can be multiple allocators within a process (ex:
Windows front-end / back-end) driven by an activation
heuristic for each bucket size. Adding such activation
heuristic is a reasonable extension.

I FRACSE uses lists, some allocators use arrays (ex: JEMalloc)
I Heap meta-data is abstracted by design. Some exploit

techniques still rely on meta-data corruption. We argue that
due to internal checks in allocators, heap meta-data
corruption as an exploit technique is dying.

I Non-deterministic heap behavior is not covered (ex: Die Hard
allocator randomization, LFH subsegment randomization,
etc). We need a probabilistic semantics to define this.

I This presentation only covers user-land heap allocators, no
kernel heap allocator.



Summing up

I This work may be the first attempt at reconciling the physical
and logical formal semantics of heap allocators.

I Heap allocator implementations are so different that making
generic heap analysis is a challenge.

I However, we can distinguish some common functionalities
(split/coallesce/extend operations, list-based abstraction,
heap selection, etc).

I Focusing on targeting user data and using a heap layout
abstraction seems like the only generic way of exploiting the
heap.

I FRACSE implementation is still going on. Its calculus may
evolve based on experiments.



Thanks for attending!

Questions?

Mail: julien.vanegue@gmail.com
Twitter: @jvanegue



(Some) Related work on user-land allocators

1. Smashing C++ VPTRS (Eric Landuyt)

2. VuDo Malloc tricks (Michel Kaempf)

3. Once upon a free (Scut)

4. Advanced DLMalloc Exploits (JP)

5. Malloc Maleficarum (Phantasmal Phantasmagoria)

6. The use of set head to defeat the wilderness (g463)

7. Heap Feng Shui (Alex Sotirov)

8. Understanding the Low Fragmentation Heap (Chris Valasek)

9. The House Of Lore : PTmalloc exploitation (blackngel)

10. Pseudomonarchia Jemallocum (argp and huku)

11. Project Heapbleed (Patroklos Argyroudis)


