
Modern static security checking
of C / C++ programs

RECON: Reverse Engineering Conference
Montreal, June 14th 2012

Julien Vanegue - Microsoft Security Science team

Shuvendu K. Lahiri - Microsoft Research

1

Trustworthy Computing – 10 years

Microsoft Security
Engineering Center

(MSEC)

Microsoft Malware
Protection Center

(MMPC)

Microsoft Security
Response Center

(MSRC)

Protecting Microsoft customers across the lifecycle
(in development, deployment & operations)

Network
Security
(NETSEC)

2002 - 2003 2004 2005 - 2007 Now

• Bill Gates writes
“Trustworthy
Computing”
memo early 2002

• “Windows
security push” for
Windows Server
2003

• Security push and
FSR extended to
other products

• Microsoft Senior
Leadership Team
agrees to require
SDL for all
products that:

• Are exposed to
meaningful risk
and/or

• Process sensitive
data

• SDL is enhanced

• “Fuzz” testing

• Code analysis

• Crypto design
requirements

• Privacy

• …

• Windows Vista is
the first OS to
go through full
SDL cycle

• Optimize the
process through
feedback,
analysis and
automation

• Evangelize
the SDL to the
software
development
community

2

Covered today

• General introduction to static analysis
• Incubating Microsoft tools to perform static security

analysis at the source level (C/C++ programs)
– Interesting safety properties of pointers, arrays and

structures that can be checked with a reasonable
signal/noise ratio.

– Tackling sequential properties for today (no checking for
concurrency vulnerabilities).

– Checking loop invariants, function pre/post conditions, and
deep inter-procedural analysis with HAVOC/Boogie/Z3.

• NOT covered: data-flow analysis tools based on state
merging algorithm in the Microsoft compiler Esp
framework.

3

Part 1: Introduction to static analysis

4

The program analysis spectrum

var

42 var2

==

+

DEREF

DEREF

IF (COND)

DO A; B; C ELSE DO D; E; F

G; H; I;

Dataflow
Analysis

Constraint
solving

Other sensitive
analyses

Abstract Syntax Tree (AST) Control Flow Graph (CFG)

To check a given property, do you need flow sensitivity? Path sensitivity? Context sensitivity? 5

The program analysis spectrum

var

42 var2

==

+

DEREF

DEREF

IF (COND)

DO A; B; C ELSE DO D; E; F

G; H; I;

Dataflow
Analysis

Constraint
solving

Other sensitive
analyses

Abstract Syntax Tree (AST) Control Flow Graph (CFG)

Question to audience: where is placed type checking for C programs ? 6

The program analysis spectrum

var

42 var2

==

+

DEREF

DEREF

IF (COND)

DO A; B; C ELSE DO D; E; F

G; H; I;

Dataflow
Analysis

Constraint
solving

Other sensitive
analyses

Abstract Syntax Tree (AST) Control Flow Graph (CFG)

Answer: Just after AST transformation – type checking for C is NOT flow sensitive 7

Sound vs. Complete program analysis

Complete (no false positive)

Sound (no false negative)

A consequence of Gödel's incompleteness theorem is that there exists some (classes of)
programs for which it is not possible to prove important properties (such as termination –
See the Turing machine halting problem).

We often need a trade-off between soundness and completeness
 8

Sound vs. Complete program analysis

Complete (no false positive)

Sound (no false negative)

A consequence of Gödel's incompleteness theorem is that there exists some (classes of)
programs for which it is not possible to prove important properties (such as termination –
See the Turing machine halting problem).

Question to audience: where do you place fuzz testing?

9

Sound vs. Complete program analysis

Complete (no false positive)

Sound (no false negative)

FUZZING is UNSOUND (SOME FALSE NEGATIVES)
and COMPLETE (NO FALSE POSITIVE)

Do not mistake sound program analysis (the ability to find all instances of a particular bug
class without false negatives) and the soundness of bugs (the guarantee that static
analysis warnings are real bugs, e.g. analysis completeness).

10

Dealing with false positives in practice

• Manual refinement: add manual annotations to inform the
analyzer that it needs to track specific boundary conditions of
specific variables at certain functions pre- or post-states.

• Warning prioritization: give a level of confidence to static
analysis alerts based on pre-selected criteria to ensure that
best warnings make it to the top of the list.

• Last resort: Lose soundness (add potential false negatives)

– Add assumptions that cannot be proved but greatly
reduce the number of warnings (ex: say that specific
macros are safe)

– Pre-filter attack surface based on known API, type, or
variable usage to focus on the most shallow bugs.

 11

HAVOC: Heap Aware Verifier
for C and C++ programs

– Developed at Microsoft Research in the RiSE team : :
http://research.microsoft.com/en-us/projects/havoc/

– Plug-in for the Microsoft C/C++ compiler.

– Detailed user manual.

– Based on the (open source) Boogie theorem prover :
http://boogie.codeplex.com

– Decision procedure based on constraint solver Z3

– User can specify properties to be checked via annotations.

The Microsoft Security team uses HAVOC to find new and
variants of existing vulnerabilities (“variation hunting”)

 12

http://research.microsoft.com/en-us/projects/havoc/
http://research.microsoft.com/en-us/projects/havoc/
http://research.microsoft.com/en-us/projects/havoc/
http://research.microsoft.com/en-us/projects/havoc/
http://boogie.codeplex.com/

 Boogie VCGen

Boogie program

HAVOC: Heap aware verifier
for C/C++ programs

SMT Solver (Z3)
Decision Procedures for

types, lists, arrays

Verification condition

Verified Warning

 C/C++  BoogiePL

C/C++ program

Memory model
[POPL’09]

Annotations

13

HAVOC: main features
HAVOC users can make use of three main constructs:

• Requires(X) F(); check the validity of a pre-condition X at function/method F

initial state.

• Ensures(X) F(); check the validity of a post-condition X at function/method F

final state.

• _resource[“MAP_NAME”, varname] == Y provides a mechanism to track

symbolic values (“ghost fields”) for specific variables. Here the symbolic value
Y is associated to variable varname. MAP_NAME is the name of the resource
(you can have many). This is used inside requires() or ensures() to track
symbolic values across function boundaries.

• Requires and Ensures can be prefixed by __free_, in that case they are

assumed and not checked (more on this later).

14

Dummy example [3] (step 1)

int f(UINT val, int mode) Verification condition

{

UINT size, pad = 0; f1: pad=0

if (val > 8) return ERR;

size = val * 2;

if (mode == M32)

 pad = sizeof(T32);

else if (mode == M64)

 pad = sizeof(T64);

size += pad;

PTYPE ptr = Alloc(size);

 __requires(size != 0)

 15

Dummy example (step 2)

int f(UINT val, int mode) Verification condition
{
UINT size, pad = 0; f1: pad=0
if (val > 8) return ERR;
size = val * 2; f2: f1 && (size == val*2) && (val <= 8)
if (mode == M32)
 pad = sizeof(T32);
else if (mode == M64)
 pad = sizeof(T64);
size += pad;

PTYPE ptr = Alloc(size);

 __requires(size != 0)

16

Dummy example (step 3)

int f(UINT val, int mode) Verification condition
{
UINT size, pad = 0; f1: pad=0
if (val > 8) return ERR;
size = val * 2; f2: f1 && (size == val*2) && (val <= 8)
if (mode == M32)
 pad = sizeof(T32); f3: pad=sizeof(T32) && (size == val*2) && (val <= 8)
else if (mode == M64)
 pad = sizeof(T64);
size += pad;

PTYPE ptr = Alloc(size);

 __requires(size != 0)

17

Dummy example (step 4)

int f(UINT val, int mode) Verification condition
{
UINT size, pad = 0; f1: pad=0
if (val > 8) return ERR;
size = val * 2; f2: f1 && (size == val*2) && (val <= 8)
if (mode == M32)
 pad = sizeof(T32); f3: pad=sizeof(T32) && (size == val*2) && (val <= 8)
else if (mode == M64)
 pad = sizeof(T64); f4: pad=sizeof(T64) && (size == val*2) && (val <= 8)
size += pad;

PTYPE ptr = Alloc(size);

 __requires(size != 0)

18

Dummy example (step 5)

int f(UINT val, int mode) Verification condition
{
UINT size, pad = 0; f1: pad=0
if (val > 8) return ERR;
size = val * 2; f2: f1 && (size == val*2) && (val <= 8)
if (mode == M32)
 pad = sizeof(T32); f3: pad=sizeof(T32) && (size == val*2) && (val <= 8)
else if (mode == M64)
 pad = sizeof(T64); f4: pad=sizeof(T64) && (size == val*2) && (val <= 8)
size += pad; f5: (size == val*2 + pad) && (val<=8) &&
 (pad=0 || pad=sizeof(T32) || pad=sizeof(T64))
PTYPE ptr = Alloc(size);

 __requires(size != 0)

19

Dummy example (step 6)

int f(UINT val, int mode) Verification condition
{
UINT size, pad = 0; f1: pad=0
if (val > 8) return ERR;
size = val * 2; f2: f1 && (size == val*2) && (val <= 8)
if (mode == M32)
 pad = sizeof(T32); f3: pad=sizeof(T32) && (size == val*2) && (val <= 8)
else if (mode == M64)
 pad = sizeof(T64); f4: pad=sizeof(T64) && (size == val*2) && (val <= 8)
size += pad; f5: (size == val*2 + pad) && (val<=8) &&
 (pad=0 || pad=sizeof(T32) || pad=sizeof(T64))
PTYPE ptr = Alloc(size);
 __requires(size != 0)  Precondition violation!

HAVOC retains path-sensitivity at merge points without approximation
(See BONUS SLIDE with details on single assignments and variable versioning)
 20

Let the party begin..

21

Part 2: OO awareness, checking loops,
deep inter-procedural analysis

examples using HAVOC.

22

 Ex 1: Webkit CSS type confusion
information disclosure vulnerability

• CVE-2010-4577: “Google Chrome before 8.0.552.224
and Chrome OS before 8.0.552.343 do not properly
parse Cascading Style Sheets (CSS) token sequences,
which allows remote attackers to read stack content”

• Published and exploited by Chris Rohlf [7]

• Illustrative example used by Sean Heelan [5] to show
where static analysis could be useful for code security.

• We show how to analyze those vulnerabilities using
HAVOC/Boogie/Z3.

23

bool CSSParser::parseFontFaceSrc()
{
 CSSValueList values(CSSValueList::createCommaSeparated());
 CSSParserValue* val;
 while ((val = m_valueList->current())) {
 CSSFontFaceSrcValue *parsedValue = NULL;
 if (val->unit == CSSParserValue::Function) {
 CSSParserValueList* args = val->function->args;
 if (args && args->size() == 1) {
 if (equalIgnoringCase(val->function->name, "local(")
 + && (args->current()->unit == CSSPrimitiveValue::CSS_STRING ||
 + args->current()->unit == CSSPrimitiveValue::CSS_IDENT)) {
 CSSParserValue* a = args->current();
 // bug if variable a is NOT of string type! Fix: uncomment green lines
 parsedValue = CSSFontFaceSrcValue::createLocal(a->string);
 } } }
 if (parsedValue) values.append(parsedValue->release());
 m_valueList->next();
 }
 return false;
 }

Simplified version of the webkit bug

24

Check the example using HAVOC static
instrumentation capabilities

// Mandate that unit field has value STRING or IDENT before using the address of the
string field in a CSSParserValue structure (e.g. &v->string)
__requires(v->unit == CSS_STRING || v->unit == CSS_IDENT)
__instrument_address_pre(v->string)
void __instrument_access_hook(CSSParserValue *v){ return; }

// Same for write to the string field (e.g. v->string = val)
__requires(v->unit == CSS_STRING || v->unit == CSS_IDENT)
__instrument_write_pre(v->string)
void __instrument_write_hook(CSSParserValue *v){ return; }

// Same for read from the string field (e.g. val = v->string)
__requires(v->unit == CSS_STRING || v->unit == CSS_IDENT)
__instrument_read_pre(v->string)
void __instrument_read_hook(CSSParserValue *v){ return; }

Directives are written in a side file, no annotation is needed in the analyzed code. 25

Checking example 1(demo)
$ Boogie.exe parseFontFaceSrc$CSSParser.bpl
parseFontFaceSrc$CSSParser.bpl(1045,1): Error BP5002:
A precondition for this call might not hold.
parseFontFaceSrc$CSSParser.bpl(576,1): Related location:
This is the precondition that might not hold. Execution
trace:
 parseFontFaceSrc$CSSParser.bpl(823,1): start
 parseFontFaceSrc$CSSParser.bpl(837,1): label_7
 parseFontFaceSrc$CSSParser.bpl(843,1): label_10
 parseFontFaceSrc$CSSParser.bpl(849,1): label_4
 parseFontFaceSrc$CSSParser.bpl(860,1): label_12
 parseFontFaceSrc$CSSParser.bpl(972,1): label_25_true
 parseFontFaceSrc$CSSParser.bpl(983,1): label_26
 parseFontFaceSrc$CSSParser.bpl(993,1): label_29_true
 parseFontFaceSrc$CSSParser.bpl(1004,1): label_30
 parseFontFaceSrc$CSSParser.bpl(1016,1): label_33_true
 parseFontFaceSrc$CSSParser.bpl(1032,1): label_35
 parseFontFaceSrc$CSSParser.bpl(1044,1): label_39
$

- We run Boogie on the vulnerable
code: pre-condition is found to be
violated (the bug is found). Good!

- We uncomment the fix line:
problem: the code location is still
marked as vulnerable! Why?
Reason: There is no guarantee that
args->current() returns the same
value at every call, we have to explain
this to the analyzer.

- The below annotation makes the
false positive disappear in the fixed
version (needed to explain that the
result of method current() only
depends on its parameters (the this
pointer)

 Refinement post-condition:
__ensures(__return == __resource("CUR_FROM_ARGS", this))
CSSParserValue* CSSParserValueList::current(); 26

Lesson learned from example 1

• When vulnerability classes are generic,
instrumentations can be used to make the
contract explicit without pre-existing annotations.

• HAVOC is sound in that it will have false positives
but no false negatives (unless initial assumptions
are unsound).

• Manual annotations can be used to craft a very
polished version of the checker. However those
are not mandatory when using a tool as an aid to
code review (unless signal/noise ratio is too low –
heavily depends on the property being checked)

27

Example 2
Deep inter-procedural analysis

“Every pointer entering the OS kernel via one of
the entry points is validated before being

dereferenced”

 Applied to large core kernel components of
Windows (300KLOC)

28

Automated analysis workflow (3 steps)

1. A pre-analysis looks at the types of parameters for all functions and
generates a candidate invariant candrequires(checked(ptr))

2. The Houdini algorithm [2] runs on the call graph and decides which
candidates hold in all possible function contexts (else, the candidate
is removed). Remains all proved candidates.

3. Every pointer variable are proved to be checked before
dereferenced (assuming initial function conditions proved at second
step). This step is intra-procedural only.

This analysis can be completely automated because the candidate
contracts are very simple and well identified as “checked(ptr)” 29

ENTRY(char *p, char *p2)

{

 F1(p);

 F2(p2);

}

F3(char *c, char *d)

{

 if (c != NULL) *c = 42;

 if (d != NULL) *d = 43;

}

F1(char *p)

{

 CHECKPTR(p);

 F3(p, GETTRUSTED(p));

 *p = 42;

}

F2(char *p2)

{

 F3(p2, NULL);

}

 30

ENTRY(char *p, char *p2)

{

 F1(p);

 F2(p2);

}

candrequires(checked(d))

candrequires(checked(c))

F3(char *c, char *d)

{

 if (c != NULL) *c = 42;

 if (d != NULL) *d = 43;

}

candrequires(checked(p))

F1(char *p)

{

 CHECKPTR(p);

 F3(p, GETTRUSTED(p));

 *p = 42;

}

candrequires(checked(p2))

F2(char *p2)

{

 F3(p2, NULL);

}

 31

ENTRY(char *p, char *p2)

{

 F1(p);

 F2(p2);

}

candrequires(checked(d))

candrequires(checked(c))

F3(char *c, char *d)

{

 if (c != NULL) *c = 42;

 if (d != NULL) *d = 43;

}

candrequires(checked(p))

F1(char *p)

{

 CHECKPTR(p);

 F3(p, GETTRUSTED(p));

 *p = 42;

}

candrequires(checked(p2))

F2(char *p2)

{

 F3(p2, NULL);

}

 32

ENTRY(char *p, char *p2)

{

 F1(p);

 F2(p2);

}

candrequires(checked(d))

candrequires(checked(c))

F3(char *c, char *d)

{

 if (c != NULL) *c = 42;

 if (d != NULL) *d = 43;

}

candrequires(checked(p))

F1(char *p)

{

 CHECKPTR(p);

 F3(p, GETTRUSTED(p));

 *p = 42;

}

candrequires(checked(p2))

F2(char *p2)

{

 F3(p2, NULL);

}

 33

ENTRY(char *p, char *p2)

{

 F1(p);

 F2(p2);

}

candrequires(checked(d))

candrequires(checked(c))

F3(char *c, char *d)

{

 if (c != NULL) *c = 42;

 if (d != NULL) *d = 43;

}

candrequires(checked(p))
F1(char *p)
{
 CHECKPTR(p);
 F3(p, GETTRUSTED(p));
 *p = 42;
}
 Needed post-condition

ensures(checked(__return))

candrequires(checked(p2))
F2(char *p2)
{
 F3(p2, NULL);
}
 34

ENTRY(char *p, char *p2)

{

 F1(p);

 F2(p2);

}

candrequires(checked(d))

candrequires(checked(c))

F3(char *c, char *d)

{

 if (c != NULL) *c = 42;

 if (d != NULL) *d = 43;

}

candrequires(checked(p))

F1(char *p)

{

 CHECKPTR(p);

 F3(p, GETTRUSTED(p));

 *p = 42;

}

candrequires(checked(p2))

F2(char *p2)

{

 F3(p2, NULL);

}

 35

ENTRY(char *p, char *p2)

{

 F1(p);

 F2(p2);

}

candrequires(checked(d))

candrequires(checked(c))

F3(char *c, char *d)

{

 if (c != NULL) *c = 42;

 if (d != NULL) *d = 43;

}

candrequires(checked(p))

F1(char *p)

{

 CHECKPTR(p);

 F3(p, GETTRUSTED(p));

 *p = 42;

}

candrequires(checked(p2))

F2(char *p2)

{

 F3(p2, NULL);

}

 36

Inter-procedural inference graph

Causality of inference is
hard to understand by
looking at the raw output of
Houdini.

37

Houdini graph for a real scenario

38

Refined causality traces

Those graphs are the real explanation of inference. We can obtain them with a
very small modification of the Houdini algorithm (See ExplainHoudini [2]) . 39

ExplainHoudini typical usage :
Filter out false positives

Inference trace (output of ExplainHoudini [2])
It is clearer that the problem is more likely a false
positive since it is not rooted by an entry point
function.

Inference graph
(output of Houdini)

40

 Example 3: Loop analysis
Sendmail CrackAddr() buffer overflow

• CVE-2002-1337: “A buffer overflow in sendmail 5.79 to

8.12.7 allows remote attackers to execute arbitrary code
via certain formatted address fields, related to sender
and recipient header comments as processed by the
crackaddr function of headers.c”

• Published by Mark Dowd [6] , Exploited by Last Stage of
Delirium group in 4 hours (bugtraq posts).

• Presented at Infiltrate 2011 by Thomas Dullien [4] as an
example of failure of static analysis tools based on state
merging algorithms.

• We show how to check the absence of such
vulnerabilities using loop invariants in Havoc/Boogie/Z3.

41

 CrackAddr() detection - Disclaimer

• Dullien’s challenge [4] is a toy example and does not entirely
reflects the crackaddr() bug:
– The original fix is bigger than one line of code and address the

vulnerability at multiple locations in the loop.
– The original loop has more than two states, some of which are

not taken into account here.
– We take Dullien’s example unmodified to respect the challenge

settings and keep it simple / pedagogical.
– We have not tried the technique on the original full-blown

example and assume that the loop invariant would need
modification.

• Our solution is not entirely automated as the user needs to
provide a loop invariant. Automatically generating such loop
invariant in a generic way is a research problem.

 42

43

In our example,
BUFFERSIZE = 25

44

We can feed this invariant to HAVOC in this syntax:

__loop_assert((upperlimit == localbuf + 15 && quotation == FALSE && roundquote == FALSE) ||
 (upperlimit == localbuf + 14 && quotation == TRUE && roundquote == FALSE) ||
 (upperlimit == localbuf + 14 && quotation == FALSE && roundquote == TRUE) ||
 (upperlimit == localbuf + 13 && quotation == TRUE && roundquote == TRUE))

An inductive invariant for crackaddr()

Let us construct the finite state
machine for this loop in domain
(quotation,roundquote,offset) :

• States correspond to memory

values at the beginning of a
loop iteration.

• Transitions correspond to

executing an iteration after
reading a character in the
input string.

45

Checking example 3
c:\havoc-old\esp>c:\Boogie\Boogie.exe copy_it.bpl
Boogie program verifier v2.2.30705.1126,
Copyright (c) 2003-2011, Microsoft.
copy_it.bpl(522,1): This loop invariant might not be
maintained by the loop.
Execution trace:
 copy_it.bpl(418,1): start
 copy_it.bpl(518,1): label_16_head
 copy_it.bpl(548,1): label_17_true
 copy_it.bpl(563,1): label_18_true
 copy_it.bpl(583,1): label_19_false
 copy_it.bpl(595,1): label_21
 copy_it.bpl(604,1): label_21_false
 copy_it.bpl(637,1): label_25
 copy_it.bpl(646,1): label_25_false

[Introduce fix]

c:\havoc-old\esp>c:\Boogie\Boogie.exe copy_it.bpl
Boogie program verifier 2.2.30705.1126, Copyright
(c) 2003-2011, Microsoft.
Boogie program verifier finished with 1 verified, 0
errors
c:\havoc-old\esp>

• We run Boogie on the vulnerable code:
loop invariant is found to be violated.

• We uncomment the fix line: the loop
invariant is verified.

• Boogie/z3 can prove such loop
invariants when they are inductive :
• It is provable at the loop entry state
• When provable at iteration N, then

provable at iteration N + 1
 It is provable at any iteration

• On next slide, we show a more concise

(abstract) invariant for the crackaddr
loop. The simpler our invariants are, the
most likely we can generate them
automatically. Unfortunately, the more
concise invariant is not provable by
induction.

46

A non-inductive failing invariant
Let us try to find a more concise and elegant invariant for the loop that can capture
the correct behavior. The blue line abstracts the two green lines in the new invariant.
This introduces a new satisfying valuation of the formula with upperlimit offset 14 at
the same time as one of quotation and roundquote variables are true (including
when both are true at the same time).

• Original (working) invariant:

__loop_assert(
(upperlimit == localbuf + 15 && quotation == FALSE && roundquote == FALSE) ||
(upperlimit == localbuf + 14 && quotation == TRUE && roundquote == FALSE) ||
(upperlimit == localbuf + 14 && quotation == FALSE && roundquote == TRUE) ||
(upperlimit == localbuf + 13 && quotation == TRUE && roundquote == TRUE))

• More concise (abstract) invariant : does loop verification still work?

__loop_assert(
(upperlimit == localbuf + 15 && quotation == FALSE && roundquote == FALSE) ||
(upperlimit == localbuf + 14 && (quotation == TRUE || roundquote == TRUE)) ||
(upperlimit == localbuf + 13 && quotation == TRUE && roundquote == TRUE))

47

(0,0,localbuf+15)

(0,1,localbuf+14)

(1,0,localbuf+14)
‘<’

‘(’

SPURIOUS STATE
(1,1,localbuf+14)

SPURIOUS STATE
(0,1,localbuf+15)

__loop_assert(
(upperlimit == localbuf + 15 && quotation == FALSE && roundquote == FALSE) ||
(upperlimit == localbuf + 14 && (quotation == TRUE || roundquote == TRUE)) ||

(upperlimit == localbuf + 13 && quotation == TRUE && roundquote == TRUE))

The red transition would happen
if the loop started in the spurious state
and executed the red iteration.

48

This invariant is NOT inductive/verified due to the spurious transition (T,T,+14)  (F,T,+15)

__loop_assert((upperlimit == localbuf + 15 && quotation == FALSE && roundquote == FALSE) ||
 (upperlimit == localbuf + 14 && (quotation == TRUE || roundquote == TRUE)) ||
 (upperlimit == localbuf + 13 && quotation == TRUE && roundquote == TRUE)

A non-inductive failing invariant

(0,0,localbuf+15)

(0,1,localbuf+14)

(1,0,localbuf+14)
‘<’

‘(’

SPURIOUS STATE
(1,1,localbuf+14)

SPURIOUS STATE
(0,1,localbuf+15)

`

Spurious
transition

Equivalence class
induced by abstraction

`

This state is
not verified
by the new

invariant

49

Taking back Halvar’s list

• Most abstract interpretation-style analyses will try to map
program lines to sets of states for variables. When control
flow converges, states are merged and “safely approximated”
such as “state 00 and p between 0 and 4” combined with
“state 01 and p between 0 and 2” will be combined into “state
00 or 01 and p between 0 and 4” . This contains spurious
states: 01 and p=4 can't actually happen. More precision is
lost on each iteration of the loop.

• When we could solve all the inter-procedural analysis and
C++ issues, we still fail on heavily simplified versions of real-
world code

50

Taking back Halvar’s list

• Most abstract interpretation-style analyses will try to map
program lines to sets of states for variables. When control
flow converges, states are merged and “safely approximated”
such as “state 00 and p between 0 and 4” combined with
“state 01 and p between 0 and 2” will be combined into “state
00 or 01 and p between 0 and 4” . This contains spurious
states: 01 and p=4 can't actually happen. More precision is
lost on each iteration of the loop.

• When we could solve all the inter-procedural analysis and
C++ issues, we still fail on heavily simplified versions of real-
world code

None of these limitations hold
if you sacrifice 100% automation

 Think Cyborg, not Robot

51

Take a step back…

• Lesson learned:
– Invariants capture the correct (expected) behaviors of

programs.
– A vulnerability is a deviation of this invariant. The deviation

is unknown and unspecified by the invariant.

• Quid of the “weird machine” ?
– Sergey Bratus coined the term weird machine to refer to

the staged (stateful) vulnerability exploitation mechanisms
leading to untrusted code execution.

– The presented analysis methodology aims at finding what
are the initial states of the weird machine. It does not try
to take any transition of it. Exploitation is a different task
than bug finding.

52

Conclusion

• Static analysis is a practical technique used
today to find a large number of vulnerabilities
– One application: variation analysis

• There is a trade-off between full automation
and expressiveness & precision of analysis
– Analyst injects domain specific knowledge

• Beyond current tools, there is room for impact
improvement and more practical research
– Get your hands dirty

53

Acknowledgments

• Thomas Ball and Shaz Qadeer at Microsoft Research for all
their mentoring and support on the HAVOC project.

• Mark Dowd and Chris Rohlf for finding the vulnerabilities
used in this presentation.

• Sean Heelan and Thomas Dullien for popularizing the
vulnerabilities and inviting us to work on them.

• The great people of Microsoft Security (MSEC / MSRC)

Microsoft is hiring
Join us to build computer security for the next ten years at:

https://careers.microsoft.com/search.aspx#&&p4=all&p0=MS
EC+MSRC&p5=all&p1=all&p2=all&p3=all

54

https://careers.microsoft.com/search.aspx
https://careers.microsoft.com/search.aspx
https://careers.microsoft.com/search.aspx
https://careers.microsoft.com/search.aspx

References
[1] Revisiting Precise Program Verification using SMT Solvers
(S.K.Lahiri, S.Qadeer), POPL’08
[2] ExplainHoudini: Making Houdini inference transparent
(S.K.Lahiri, J.Vanegue), VMCAI’11
[3] Zero allocations vulnerabilities
(J.Vanegue), Usenix Security WOOT’10
[4] The Future of exploitation revisited
(T.Dullien), Infiltrate security conference 2011
[5] Vulnerability Detection Systems: Think Cyborg, Not Robot
(S.Heelan), IEEE S&P journal volume 9 issue 3
[6] Remote Sendmail Header Processing Vulnerability
(M.Dowd), ISS X-force advisory 142, March 2003
[7] WebKit CSS Font Face Parsing Type Confusion
(C.Rohlf), em386.blogspot.com, November 2010
[8] SMT solvers for software security
(J.Vanegue,S.Heelan,R.Rolles), Usenix Security WOOT’12 (to appear)

55

We want to hear your questions and feedback!

jvanegue@microsoft.com
shuvendu@microsoft.com

56

mailto:jvanegue@microsoft.com
mailto:shuvendu@microsoft.com

BONUS SLIDES

57

Under the hood: Boogie IR
• Based on the dynamic single assignment (DSA) intermediate form

• Every assignment creates a fresh version number for the destination
variable (as in Static Single Assignment form i.e. SSA)

 Ex: a1 = 42; if (a1) { a2 = a1 + 1; } else { a3 = a1 + 2; }
• In DSA, more than one assignment can be done on the same versioned

variable as long as this cannot happen at run time (Previous example
can use a2 in both branches in DSA, not in SSA).

• Use assume/assert logic explicitly encoded in analyzed program.

• Assume introduces a new assumption (ex: a path condition)
• Automatically inserted at the beginning of basic blocks by HAVOC

to reflect the augmented guarding condition.
• Assume(x) = true means the set of assumptions is consistent.
• Assume(x) = false means the path is infeasible. This happens when

the assumptions are contradictory.
• Assert checks if a certain condition is true at program location

• Guided by user, inserted where properties have to be checked.
• Assert(x) = true means everything is alright (X is true, analysis

continues, no violation can happen on this path)
• Assert(x) = false leads to a static analysis alert.

58

HAVOC C++ to Boogie translation

• Use new function (now method) name scheme embedding the class
name. i.e. MethodName$ClassName instead of FunctionName.

• Adapted instrumentation scheme to work with methods and objects:
__instrument_call_pre(MethodName$*, *$ClassName, …)

• Dynamic dispatch boogie IR generation to support virtual table calls on
derived methods in object hierarchy. All 20+ operators are treated as
regular methods that can be overloaded.

• Support C++ references as syntactic sugar for accesses on pointed data
structures. Allow the presence of C++ references in instrumentations.

• Boogie translation is performed after the C++ compiler template
specialization. The prover only sees specialized classes in the program IR.

• Unsupported (as of Nov 2011): anonymous functions (lambdas),
automated dynamic type inference, parametric polymorphism (WIP: make
use of unique identifiers for every instance of named methods still sharing
the same name after all previous compiler transformations)

59

Open challenges in practical analysis

1. Type safety for C/C++
– In C : Propagate type information in the presence of unsafe casts
– In C++ : Propagate dynamic type information (application: precise static vtable lookups)
– Flow (in)sensitive type qualifiers by J Foster, R Johnson, J Kodumal, A Aiken

http://www.cs.umd.edu/~jfoster/papers/toplas-quals.html

2. Invariant synthesis
– Precondition Inference from Intermittent Assertions and Application to Contracts on

Collections by P Cousot, R Cousot, F Logozzo (VMCAI 2011)
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI-11.shtml

3. Concurrent programs analysis

– Interleaving leads to state space explosion
– Partial Order Reduction: http://en.wikipedia.org/wiki/Partial_order_reduction
– The Poirot tool: http://research.microsoft.com/pubs/148752/tr.pdf (MSR)

4. Test generation (Input crafting)
– Automatically create a witness test to confirm the property violation.
– Automatic generation of control flow hijacking exploits by S Heelan
– http://seanhn.files.wordpress.com/2009/09/thesis1.pdf

 60

http://www.cs.umd.edu/~jfoster/papers/toplas-quals.html
http://www.cs.umd.edu/~jfoster/papers/toplas-quals.html
http://www.cs.umd.edu/~jfoster/papers/toplas-quals.html
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI-11.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI-11.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI-11.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI-11.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI-11.shtml
http://en.wikipedia.org/wiki/Partial_order_reduction
http://en.wikipedia.org/wiki/Partial_order_reduction
http://research.microsoft.com/pubs/148752/tr.pdf
http://seanhn.files.wordpress.com/2009/09/thesis1.pdf

