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Trustworthy Computing – 10 years 

Microsoft Security 
Engineering Center 

(MSEC) 

Microsoft Malware 
Protection Center 

(MMPC) 

Microsoft  Security 
Response Center 

(MSRC) 

Protecting Microsoft customers across the lifecycle 
(in development, deployment & operations) 

Network  
Security  
(NETSEC) 

2002 - 2003 2004 2005 - 2007 Now 

• Bill Gates writes 
“Trustworthy 
Computing” 
memo early 2002 
 

• “Windows 
security push” for 
Windows Server 
2003  
 

• Security push and 
FSR extended to 
other products 

• Microsoft Senior 
Leadership Team 
agrees to require 
SDL for all 
products that: 

• Are exposed to 
meaningful risk 
and/or  

• Process sensitive 
data 

 

 

 

 

 

• SDL is enhanced  

• “Fuzz” testing 

• Code analysis 

• Crypto design 
requirements 

• Privacy 

• … 
 

• Windows Vista is 
the first OS to 
go through full 
SDL cycle 

• Optimize the 
process through 
feedback, 
analysis and 
automation 
 

• Evangelize  
the SDL to the 
software 
development 
community 
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Covered today  

• General introduction to static analysis 
• Incubating Microsoft tools to perform static security  

analysis at the source level (C/C++ programs) 
– Interesting safety properties of pointers, arrays and 

structures that can be checked with a reasonable 
signal/noise ratio. 

– Tackling sequential properties for today (no checking for 
concurrency vulnerabilities). 

– Checking loop invariants, function pre/post conditions, and 
deep inter-procedural analysis with HAVOC/Boogie/Z3. 

 

• NOT covered: data-flow analysis tools based on state 
merging algorithm in the Microsoft compiler Esp 
framework. 

 
 

3 



Part 1: Introduction to static analysis 
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The program analysis spectrum 

var
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DEREF
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G; H; I;

Dataflow
Analysis

Constraint 
solving

Other sensitive 
analyses

Abstract Syntax Tree (AST)              Control Flow Graph (CFG) 

To check a given property, do you need flow sensitivity? Path sensitivity? Context sensitivity? 5 
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Question to audience: where is placed type checking for C programs ? 6 



The program analysis spectrum 
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Answer: Just after AST transformation – type checking for C is NOT flow sensitive 7 



Sound vs. Complete program analysis 

Complete (no false positive) 

Sound (no false negative) 

A consequence of Gödel's incompleteness theorem is that there exists some (classes of) 
programs for which it is not possible to prove important properties (such as termination – 
See the Turing machine halting problem).  
 

We often need a trade-off between soundness and completeness 
 8 



Sound vs. Complete program analysis 

Complete (no false positive) 

Sound (no false negative) 

A consequence of Gödel's incompleteness theorem is that there exists some (classes of) 
programs for which it is not possible to prove important properties (such as termination – 
See the Turing machine halting problem).  
 

Question to audience: where do you place fuzz testing? 
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Sound vs. Complete program analysis 

Complete (no false positive) 

Sound (no false negative) 

FUZZING is UNSOUND (SOME FALSE NEGATIVES)  
and COMPLETE (NO FALSE POSITIVE) 

 
 
 

 
 
Do not mistake sound program analysis (the ability to find all instances of a particular bug 
class without false negatives) and the soundness of bugs (the guarantee that static 
analysis warnings are real bugs, e.g. analysis completeness). 

 
10 



Dealing with false positives in practice 

• Manual refinement: add manual annotations to inform the 
analyzer that it needs to track specific boundary conditions of 
specific variables at certain functions pre- or post-states. 

• Warning prioritization: give a level of confidence to static 
analysis alerts based on pre-selected criteria to ensure that 
best warnings make it to the top of the list. 

• Last resort: Lose soundness (add potential false negatives)  

–  Add assumptions that cannot be proved but greatly 
reduce the number of warnings (ex: say that specific 
macros are safe) 

– Pre-filter attack surface based on known API, type, or 
variable usage to focus on the most shallow bugs. 
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HAVOC: Heap Aware Verifier  
for C and C++ programs 

  

– Developed at Microsoft Research in the RiSE team : : 
http://research.microsoft.com/en-us/projects/havoc/ 

– Plug-in for the Microsoft C/C++ compiler. 

– Detailed user manual. 

– Based on the (open source) Boogie theorem prover : 
http://boogie.codeplex.com  

– Decision procedure based on constraint solver Z3 

– User can specify properties to be checked via annotations. 

 

The Microsoft Security team uses HAVOC to find new and 
variants of existing vulnerabilities (“variation hunting”) 
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   Boogie VCGen 

Boogie program 

HAVOC: Heap aware verifier  
for C/C++ programs 

SMT Solver (Z3) 
Decision Procedures for  

types, lists, arrays 

Verification condition 

Verified Warning 

   C/C++  BoogiePL 

C/C++ program 

Memory model  
[POPL’09] 

Annotations 

13 



HAVOC: main features 
HAVOC users can make use of three main constructs: 
 
• Requires(X) F(); check the validity of a pre-condition X at function/method F 

initial state. 
 
• Ensures(X) F(); check the validity of a post-condition X at function/method F 

final state. 
 
• _resource[“MAP_NAME”, varname] == Y provides a mechanism to track 

symbolic values (“ghost fields”) for specific variables. Here the symbolic value 
Y is associated to variable varname. MAP_NAME is the name of the resource 
(you can have many). This is used inside requires() or ensures() to track 
symbolic values across function boundaries. 

 
• Requires and Ensures can be prefixed by __free_, in that case they are 

assumed and not checked (more on this later). 
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Dummy example [3] (step 1) 

int f(UINT val, int mode) Verification condition  

{ 

UINT size, pad = 0; f1: pad=0 

if (val > 8) return ERR;  

size = val * 2;   

if (mode == M32)  

  pad = sizeof(T32);  

else if (mode == M64)  

   pad = sizeof(T64);  

size += pad;  

    

PTYPE ptr = Alloc(size);   

    __requires(size != 0) 
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Dummy example (step 2) 

int f(UINT val, int mode)  Verification condition 
{ 
UINT size, pad = 0; f1: pad=0 
if (val > 8) return ERR;  
size = val * 2;  f2: f1 && (size == val*2) && (val <= 8)  
if (mode == M32)  
  pad = sizeof(T32);  
else if (mode == M64)  
   pad = sizeof(T64);  
size += pad;  
    
PTYPE ptr = Alloc(size);  
            
    __requires(size != 0) 
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Dummy example (step 3) 

int f(UINT val, int mode)  Verification condition 
{ 
UINT size, pad = 0; f1: pad=0 
if (val > 8) return ERR;  
size = val * 2;  f2: f1 && (size == val*2) && (val <= 8) 
if (mode == M32)  
  pad = sizeof(T32); f3: pad=sizeof(T32) && (size == val*2) && (val <= 8) 
else if (mode == M64)  
   pad = sizeof(T64);  
size += pad; 
   
PTYPE ptr = Alloc(size);  
           
    __requires(size != 0)    
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Dummy example (step 4) 

int f(UINT val, int mode)  Verification condition 
{ 
UINT size, pad = 0; f1: pad=0 
if (val > 8) return ERR;  
size = val * 2;  f2: f1 && (size == val*2) && (val <= 8) 
if (mode == M32)  
  pad = sizeof(T32); f3: pad=sizeof(T32) && (size == val*2) && (val <= 8) 
else if (mode == M64)  
   pad = sizeof(T64); f4: pad=sizeof(T64) && (size == val*2) && (val <= 8) 
size += pad; 
   
PTYPE ptr = Alloc(size);  
           
    __requires(size != 0)    
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Dummy example (step 5) 

int f(UINT val, int mode)  Verification condition 
{ 
UINT size, pad = 0; f1: pad=0 
if (val > 8) return ERR;  
size = val * 2;  f2: f1 && (size == val*2) && (val <= 8) 
if (mode == M32)  
  pad = sizeof(T32); f3: pad=sizeof(T32) && (size == val*2) && (val <= 8) 
else if (mode == M64)  
   pad = sizeof(T64); f4: pad=sizeof(T64) && (size == val*2) && (val <= 8) 
size += pad;  f5: (size == val*2 + pad) && (val<=8) && 
          (pad=0 || pad=sizeof(T32) || pad=sizeof(T64)) 
PTYPE ptr = Alloc(size);  
      
    __requires(size != 0)  
 

19 



Dummy example (step 6) 

int f(UINT val, int mode)  Verification condition 
{ 
UINT size, pad = 0; f1: pad=0 
if (val > 8) return ERR;  
size = val * 2;  f2: f1 && (size == val*2) && (val <= 8) 
if (mode == M32)  
  pad = sizeof(T32); f3: pad=sizeof(T32) && (size == val*2) && (val <= 8) 
else if (mode == M64)  
   pad = sizeof(T64); f4: pad=sizeof(T64) && (size == val*2) && (val <= 8) 
size += pad;  f5: (size == val*2 + pad) && (val<=8) && 
          (pad=0 || pad=sizeof(T32) || pad=sizeof(T64)) 
PTYPE ptr = Alloc(size);       
    __requires(size != 0)  Precondition violation! 
 
HAVOC retains path-sensitivity at merge points without approximation 
(See BONUS SLIDE with details on single assignments and variable versioning) 
 20 



Let the party begin.. 
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Part 2: OO awareness, checking loops, 
deep inter-procedural analysis 

examples using HAVOC.   
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 Ex 1: Webkit CSS type confusion 
information disclosure vulnerability 

 

• CVE-2010-4577: “Google Chrome before 8.0.552.224 
and Chrome OS before 8.0.552.343 do not properly 
parse Cascading Style Sheets (CSS) token sequences, 
which allows remote attackers to read stack content” 

• Published and exploited by Chris Rohlf [7] 

• Illustrative example used by Sean Heelan [5] to show 
where static analysis could be useful for code security. 

• We show how to analyze those vulnerabilities using 
HAVOC/Boogie/Z3. 
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bool CSSParser::parseFontFaceSrc()   
{   
     CSSValueList values(CSSValueList::createCommaSeparated());   
     CSSParserValue* val;   
     while ((val = m_valueList->current())) {   
         CSSFontFaceSrcValue *parsedValue = NULL; 
           if (val->unit == CSSParserValue::Function) {   
             CSSParserValueList* args = val->function->args;    
             if (args && args->size() == 1) {   
                 if (equalIgnoringCase(val->function->name, "local(")  
 +                   && (args->current()->unit == CSSPrimitiveValue::CSS_STRING ||    
 +                  args->current()->unit == CSSPrimitiveValue::CSS_IDENT)) {   
                     CSSParserValue* a = args->current();   
    // bug if variable a is NOT of string type! Fix: uncomment green lines 
                     parsedValue = CSSFontFaceSrcValue::createLocal(a->string); 
               } } }  
         if (parsedValue) values.append(parsedValue->release());   
         m_valueList->next();   
     }   
     return false;   
 }  

Simplified version of the webkit bug 
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Check the example using HAVOC static 
instrumentation capabilities 

 
// Mandate that unit field has value STRING or IDENT before using the address of the 
string field in a CSSParserValue structure (e.g. &v->string) 
__requires(v->unit == CSS_STRING || v->unit == CSS_IDENT) 
__instrument_address_pre(v->string) 
void __instrument_access_hook(CSSParserValue *v){ return; } 
 
// Same for write to the string field (e.g. v->string = val) 
__requires(v->unit == CSS_STRING || v->unit == CSS_IDENT) 
__instrument_write_pre(v->string) 
void __instrument_write_hook(CSSParserValue *v){ return; } 
 
// Same for read from the string field (e.g. val = v->string) 
__requires(v->unit == CSS_STRING || v->unit == CSS_IDENT) 
__instrument_read_pre(v->string) 
void __instrument_read_hook(CSSParserValue *v){ return; } 

Directives are written in a side file, no annotation is needed in the analyzed code. 25 



Checking example 1(demo) 
$ Boogie.exe parseFontFaceSrc$CSSParser.bpl 
parseFontFaceSrc$CSSParser.bpl(1045,1): Error BP5002: 
A precondition for this call might not hold. 
parseFontFaceSrc$CSSParser.bpl(576,1): Related location: 
This is the precondition that might not hold. Execution 
trace: 
  parseFontFaceSrc$CSSParser.bpl(823,1): start 
  parseFontFaceSrc$CSSParser.bpl(837,1): label_7 
  parseFontFaceSrc$CSSParser.bpl(843,1): label_10 
  parseFontFaceSrc$CSSParser.bpl(849,1): label_4 
  parseFontFaceSrc$CSSParser.bpl(860,1): label_12 
  parseFontFaceSrc$CSSParser.bpl(972,1): label_25_true 
  parseFontFaceSrc$CSSParser.bpl(983,1): label_26 
  parseFontFaceSrc$CSSParser.bpl(993,1): label_29_true 
  parseFontFaceSrc$CSSParser.bpl(1004,1): label_30 
  parseFontFaceSrc$CSSParser.bpl(1016,1): label_33_true 
  parseFontFaceSrc$CSSParser.bpl(1032,1): label_35 
  parseFontFaceSrc$CSSParser.bpl(1044,1): label_39 
$ 
 

- We run Boogie on the vulnerable 
code: pre-condition is found to be 
violated (the bug is found). Good! 
 
- We uncomment the fix line: 
problem: the code location is still 
marked as vulnerable! Why? 
Reason: There is no guarantee that 
args->current() returns the same 
value at every call, we have to explain 
this to the analyzer. 
 
- The below annotation makes the 
false positive disappear in the fixed 
version (needed to explain that the 
result of method current() only 
depends on its parameters (the this 
pointer) 

 Refinement post-condition: 
__ensures(__return == __resource("CUR_FROM_ARGS", this)) 
CSSParserValue* CSSParserValueList::current(); 26 



Lesson learned from example 1 

• When vulnerability classes are generic, 
instrumentations can be used to make the 
contract explicit without pre-existing annotations.  

• HAVOC is sound in that it will have false positives 
but no false negatives (unless initial assumptions 
are unsound). 

• Manual annotations can be used to craft a very 
polished version of the checker. However those 
are not mandatory when using a tool as an aid to 
code review (unless signal/noise ratio is too low – 
heavily depends on the property being checked) 
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Example 2 
Deep inter-procedural analysis 

 

“Every pointer entering the OS kernel via one of 
the entry points is validated before being 

dereferenced” 

 

 Applied to large core kernel components of 
Windows (300KLOC) 

 

 
28 



Automated analysis workflow (3 steps) 

1. A pre-analysis looks at the types of parameters for all functions and 
generates a candidate invariant candrequires(checked(ptr)) 

 

2. The Houdini algorithm [2] runs on the call graph and decides which 
candidates hold in all possible function contexts (else, the candidate 
is removed). Remains all proved candidates. 

 

3. Every pointer variable are proved to be checked before 
dereferenced (assuming initial function conditions proved at second 
step). This step is intra-procedural only. 

 

This analysis can be completely automated because the candidate 
contracts are very simple and well identified as “checked(ptr)” 29 



ENTRY(char *p, char *p2) 

{ 

  F1(p); 

  F2(p2); 

} 

F3(char *c, char *d) 

{ 

     if (c != NULL) *c = 42; 

     if (d != NULL) *d = 43; 

} 

 

 

 

 

 

 

F1(char *p) 

{ 

  CHECKPTR(p); 

  F3(p, GETTRUSTED(p)); 

 *p =  42; 

} 

 

F2(char *p2) 

{ 

    F3(p2, NULL); 

} 
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ENTRY(char *p, char *p2) 

{ 

  F1(p); 

  F2(p2); 

} 

candrequires(checked(d)) 

candrequires(checked(c)) 

F3(char *c, char *d) 

{ 

     if (c != NULL) *c = 42; 

     if (d != NULL) *d = 43; 

} 

 

 

 

 

 

 

candrequires(checked(p)) 

F1(char *p) 

{ 

  CHECKPTR(p); 

  F3(p, GETTRUSTED(p)); 

 *p =  42; 

} 

 

candrequires(checked(p2)) 

F2(char *p2) 

{ 

    F3(p2, NULL); 

} 
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ENTRY(char *p, char *p2) 

{ 

  F1(p); 

  F2(p2); 

} 

candrequires(checked(d)) 

candrequires(checked(c)) 

F3(char *c, char *d) 

{ 

     if (c != NULL) *c = 42; 

     if (d != NULL) *d = 43; 

} 

 

 

 

 

 

 

candrequires(checked(p)) 

F1(char *p) 

{ 

  CHECKPTR(p); 

  F3(p, GETTRUSTED(p)); 

 *p =  42; 

} 

 

candrequires(checked(p2)) 

F2(char *p2) 

{ 

    F3(p2, NULL); 

} 
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ENTRY(char *p, char *p2) 

{ 

  F1(p); 

  F2(p2); 

} 

candrequires(checked(d)) 

candrequires(checked(c)) 

F3(char *c, char *d) 

{ 

     if (c != NULL) *c = 42; 

     if (d != NULL) *d = 43; 

} 

 

 

 

 

 

 

candrequires(checked(p)) 

F1(char *p) 

{ 

  CHECKPTR(p); 

  F3(p, GETTRUSTED(p)); 

 *p =  42; 

} 

 

candrequires(checked(p2)) 

F2(char *p2) 

{ 

    F3(p2, NULL); 

} 
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ENTRY(char *p, char *p2) 

{ 

  F1(p); 

  F2(p2); 

} 

candrequires(checked(d)) 

candrequires(checked(c)) 

F3(char *c, char *d) 

{               

     if (c != NULL) *c = 42; 

     if (d != NULL) *d = 43; 

} 

 

 

 

 

 

 

candrequires(checked(p)) 
F1(char *p) 
{ 
  CHECKPTR(p); 
  F3(p, GETTRUSTED(p)); 
 *p =  42; 
}    
     Needed post-condition 

ensures(checked(__return)) 
      
 
candrequires(checked(p2)) 
F2(char *p2) 
{ 
    F3(p2, NULL); 
} 
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ENTRY(char *p, char *p2) 

{ 

  F1(p); 

  F2(p2); 

} 

candrequires(checked(d)) 

candrequires(checked(c)) 

F3(char *c, char *d) 

{ 

     if (c != NULL) *c = 42; 

     if (d != NULL) *d = 43; 

} 

 

 

 

 

 

 

candrequires(checked(p)) 

F1(char *p) 

{ 

  CHECKPTR(p); 

  F3(p, GETTRUSTED(p)); 

 *p =  42; 

} 

 

candrequires(checked(p2)) 

F2(char *p2) 

{ 

    F3(p2, NULL); 

} 
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ENTRY(char *p, char *p2) 

{ 

  F1(p); 

  F2(p2); 

} 

candrequires(checked(d)) 

candrequires(checked(c)) 

F3(char *c, char *d) 

{ 

     if (c != NULL) *c = 42; 

     if (d != NULL) *d = 43; 

} 

 

 

 

 

 

 

candrequires(checked(p)) 

F1(char *p) 

{ 

  CHECKPTR(p); 

  F3(p, GETTRUSTED(p)); 

 *p =  42; 

} 

 

candrequires(checked(p2)) 

F2(char *p2) 

{ 

    F3(p2, NULL); 

} 
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Inter-procedural inference graph 

Causality of inference is 
hard to understand by 
looking at the raw output of 
Houdini. 
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Houdini graph for a real scenario 
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Refined causality traces 

Those graphs are the real explanation of inference. We can obtain them with a 
very small modification of the Houdini algorithm (See ExplainHoudini [2]) . 39 



ExplainHoudini typical usage : 
Filter out false positives 

Inference trace (output of ExplainHoudini [2]) 
It is clearer that the problem is more likely a false 
positive since it is not rooted by an entry point 
function. 

Inference graph  
(output of Houdini) 
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 Example 3: Loop analysis 
Sendmail CrackAddr() buffer overflow 

 
• CVE-2002-1337: “A buffer overflow in sendmail 5.79 to 

8.12.7 allows remote attackers to execute arbitrary code 
via certain formatted address fields, related to sender 
and recipient header comments as processed by the 
crackaddr function of headers.c” 

• Published by Mark Dowd [6] , Exploited by Last Stage of 
Delirium group in 4 hours (bugtraq posts). 

• Presented at Infiltrate 2011 by Thomas Dullien [4] as an 
example of failure of static analysis tools based on state 
merging algorithms. 

• We show how to check the absence of such 
vulnerabilities using loop invariants in Havoc/Boogie/Z3. 
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 CrackAddr() detection - Disclaimer 

• Dullien’s challenge [4] is a toy example and does not entirely 
reflects the crackaddr() bug: 
– The original fix is bigger than one line of code and address the 

vulnerability at multiple locations in the loop. 
– The original loop has more than two states, some of which are 

not taken into account here. 
– We take Dullien’s example unmodified to respect the challenge 

settings and keep it simple / pedagogical.  
– We have not tried the technique on the original full-blown 

example and assume that the loop invariant would need 
modification. 

• Our solution is not entirely automated as the user needs to 
provide a loop invariant. Automatically generating such loop 
invariant in a generic way is a research problem.  
 

 42 



 

43 

In our example,  
BUFFERSIZE = 25 
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We can feed this invariant to HAVOC in this syntax: 
 
__loop_assert( (upperlimit == localbuf + 15 &&  quotation == FALSE && roundquote == FALSE)      ||  
                            (upperlimit == localbuf + 14 &&  quotation == TRUE && roundquote == FALSE)       ||  
      (upperlimit == localbuf + 14 &&  quotation == FALSE && roundquote == TRUE)       ||   
                            (upperlimit == localbuf + 13 &&  quotation == TRUE && roundquote == TRUE) )  

An inductive invariant for crackaddr() 

Let us construct the finite state 
machine for this loop in domain 
(quotation,roundquote,offset) : 
 
• States correspond to memory 

values at the beginning of a 
loop iteration. 

 
• Transitions correspond to 

executing an iteration after 
reading a character in the 
input string. 
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Checking example 3 
c:\havoc-old\esp>c:\Boogie\Boogie.exe copy_it.bpl 
Boogie program verifier v2.2.30705.1126, 
Copyright (c) 2003-2011, Microsoft. 
copy_it.bpl(522,1): This loop invariant might not be 
maintained by the loop. 
Execution trace: 
    copy_it.bpl(418,1): start 
    copy_it.bpl(518,1): label_16_head 
    copy_it.bpl(548,1): label_17_true 
    copy_it.bpl(563,1): label_18_true 
    copy_it.bpl(583,1): label_19_false 
    copy_it.bpl(595,1): label_21 
    copy_it.bpl(604,1): label_21_false 
    copy_it.bpl(637,1): label_25 
    copy_it.bpl(646,1): label_25_false 
 
[ Introduce fix ] 
 
c:\havoc-old\esp>c:\Boogie\Boogie.exe copy_it.bpl 
Boogie program verifier 2.2.30705.1126, Copyright 
(c) 2003-2011, Microsoft. 
Boogie program verifier finished with 1 verified, 0 
errors 
c:\havoc-old\esp> 
 

• We run Boogie on the vulnerable code: 
loop invariant is found to be violated. 
 

• We uncomment the fix line: the loop 
invariant is verified. 
 

• Boogie/z3 can prove such loop 
invariants when they are inductive : 
• It is provable at the loop entry state 
• When provable at iteration N, then 

provable at iteration N + 1 
 It is provable at any iteration 
 
•  On next slide, we show a more concise 

(abstract) invariant for the crackaddr 
loop. The simpler our invariants are, the 
most likely we can generate them 
automatically. Unfortunately, the more 
concise invariant is not provable by 
induction.  
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A non-inductive failing invariant 
Let us try to find a more concise and elegant invariant for the loop that can capture 
the correct behavior. The blue line abstracts the two green lines in the new invariant. 
This introduces a new satisfying valuation of the formula with upperlimit offset 14 at 
the same time as one of quotation and roundquote variables are true (including 
when both are true at the same time). 

 
• Original (working) invariant: 
 
__loop_assert(  
(upperlimit == localbuf + 15 &&  quotation == FALSE && roundquote == FALSE)      ||  
(upperlimit == localbuf + 14 &&  quotation == TRUE && roundquote == FALSE)       || 
(upperlimit == localbuf + 14 &&  quotation == FALSE && roundquote == TRUE)       ||   
(upperlimit == localbuf + 13 &&  quotation == TRUE && roundquote == TRUE) ) 
 
• More concise (abstract) invariant : does loop verification still work? 
 
__loop_assert(  
(upperlimit == localbuf + 15 &&  quotation == FALSE && roundquote == FALSE)   ||  
(upperlimit == localbuf + 14 &&  (quotation == TRUE || roundquote == TRUE))    ||  
(upperlimit == localbuf + 13 &&  quotation == TRUE && roundquote == TRUE) ) 
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(0,0,localbuf+15)

(0,1,localbuf+14)

(1,0,localbuf+14)
‘<’

‘(’

SPURIOUS STATE
(1,1,localbuf+14)

SPURIOUS STATE
(0,1,localbuf+15)

__loop_assert(  
(upperlimit == localbuf + 15 &&  quotation == FALSE && roundquote == FALSE)   ||  
(upperlimit == localbuf + 14 &&  (quotation == TRUE || roundquote == TRUE))    ||  

(upperlimit == localbuf + 13 &&  quotation == TRUE && roundquote == TRUE) ) 

The red transition would happen 
if the loop started in the spurious state  
and executed the red iteration. 
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This invariant is NOT inductive/verified due to the spurious transition (T,T,+14)   (F,T,+15) 
 
__loop_assert( (upperlimit == localbuf + 15 &&  quotation == FALSE && roundquote == FALSE)   ||  
                            (upperlimit == localbuf + 14 &&  (quotation == TRUE || roundquote == TRUE))    ||  
                            (upperlimit == localbuf + 13 &&  quotation == TRUE && roundquote == TRUE)  

A non-inductive failing invariant 

(0,0,localbuf+15)

(0,1,localbuf+14)

(1,0,localbuf+14)
‘<’

‘(’

SPURIOUS STATE
(1,1,localbuf+14)

SPURIOUS STATE
(0,1,localbuf+15)

`

Spurious 
transition 

Equivalence class 
induced by abstraction

`

This state is 
not verified 
by the new 

invariant
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Taking back Halvar’s list 

 
• Most abstract interpretation-style analyses will try to map 
program lines to sets of states for variables. When control 
flow converges, states are merged and “safely approximated” 
such as “state 00 and p between 0 and 4” combined with 
“state 01 and p between 0 and 2” will be combined into “state 
00 or 01 and p between 0 and 4” . This contains spurious 
states: 01 and p=4 can't actually happen. More precision is 
lost on each iteration of the loop. 
 
• When we could solve all the inter-procedural analysis and 
C++ issues, we still fail on heavily simplified versions of real-
world code 
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Taking back Halvar’s list 

• Most abstract interpretation-style analyses will try to map 
program lines to sets of states for variables. When control 
flow converges, states are merged and “safely approximated” 
such as “state 00 and p between 0 and 4” combined with 
“state 01 and p between 0 and 2” will be combined into “state 
00 or 01 and p between 0 and 4” . This contains spurious 
states: 01 and p=4 can't actually happen. More precision is 
lost on each iteration of the loop. 
 
• When we could solve all the inter-procedural analysis and 
C++ issues, we still fail on heavily simplified versions of real-
world code 
 

None of these limitations hold  
if you sacrifice 100% automation 

 
 Think Cyborg, not Robot 
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Take a step back… 

• Lesson learned: 
– Invariants capture the correct (expected) behaviors of 

programs. 
– A vulnerability is a deviation of this invariant. The deviation 

is unknown and unspecified by the invariant. 

• Quid of the “weird machine” ? 
– Sergey Bratus coined the term weird machine to refer to 

the staged (stateful) vulnerability exploitation mechanisms 
leading to untrusted code execution. 

– The presented analysis methodology aims at finding what 
are the initial states of the weird machine. It does not try 
to take any transition of it. Exploitation is a different task 
than bug finding. 
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Conclusion 

• Static analysis is a practical technique used 
today to find a large number of vulnerabilities 
– One application: variation analysis 

• There is a trade-off between full automation 
and expressiveness & precision of analysis 
– Analyst injects domain specific knowledge  

• Beyond current tools, there is room for impact 
improvement and more practical research 
– Get your hands dirty 
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We want to hear your questions and feedback! 
 

jvanegue@microsoft.com 
shuvendu@microsoft.com 
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BONUS SLIDES 
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Under the hood: Boogie IR 
• Based on the dynamic single assignment (DSA) intermediate form 

• Every assignment creates a fresh version number for the destination 
variable (as in Static Single Assignment form i.e. SSA) 

     Ex: a1 = 42; if (a1) { a2 = a1 + 1; } else { a3 = a1 + 2; }  
• In DSA, more than one assignment can be done on the same versioned 

variable as long as this cannot happen at run time (Previous example 
can use a2 in both branches in DSA, not in SSA). 

 
• Use assume/assert logic explicitly encoded in analyzed program. 

• Assume introduces a new assumption (ex: a path condition) 
• Automatically inserted at the beginning of basic blocks by HAVOC 

to reflect the augmented guarding condition. 
• Assume(x) = true means the set of assumptions is consistent. 
• Assume(x) = false means the path is infeasible. This happens when 

the assumptions are contradictory. 
• Assert checks if a certain condition is true at program location 

• Guided by user, inserted where properties have to be checked. 
• Assert(x) = true means everything is alright (X is true, analysis 

continues, no violation can happen on this path) 
• Assert(x) = false leads to a static analysis alert. 
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HAVOC C++ to Boogie translation  

• Use new function (now method) name scheme embedding the class 
name. i.e. MethodName$ClassName instead of FunctionName. 

• Adapted instrumentation scheme to work with methods and objects: 
__instrument_call_pre(MethodName$*, *$ClassName, …) 

• Dynamic dispatch boogie IR generation to support virtual table calls on 
derived methods in object hierarchy. All 20+ operators are treated as 
regular methods that can be overloaded. 

• Support C++ references as syntactic sugar for accesses on pointed data 
structures. Allow the presence of C++ references in instrumentations. 

• Boogie translation is performed after the C++ compiler template 
specialization. The prover only sees specialized classes in the program IR. 

• Unsupported (as of Nov 2011): anonymous functions (lambdas), 
automated dynamic type inference, parametric polymorphism (WIP: make 
use of unique identifiers for every instance of named methods still sharing 
the same name after all previous compiler transformations) 

59 



 
Open challenges in practical analysis 

 

1. Type safety for C/C++  
– In C : Propagate type information in the presence of unsafe casts 
– In C++ : Propagate dynamic type information  (application: precise static vtable lookups) 
– Flow (in)sensitive type qualifiers by J Foster, R Johnson, J Kodumal, A Aiken 

http://www.cs.umd.edu/~jfoster/papers/toplas-quals.html 
 

2. Invariant synthesis  
– Precondition Inference from Intermittent Assertions and Application to Contracts on 

Collections by P Cousot, R Cousot, F Logozzo (VMCAI 2011) 
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI-11.shtml 

 
3. Concurrent programs analysis 

– Interleaving leads to state space explosion 
– Partial Order Reduction: http://en.wikipedia.org/wiki/Partial_order_reduction 
– The Poirot tool: http://research.microsoft.com/pubs/148752/tr.pdf  (MSR) 
 

4. Test generation (Input crafting) 
– Automatically create a witness test to confirm the property violation. 
– Automatic generation of control flow hijacking exploits by S Heelan 
– http://seanhn.files.wordpress.com/2009/09/thesis1.pdf 
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