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Program termination is a classic non-safety property whose falsification cannot in general be witnessed by a
finite trace. This makes testing for non-termination challenging, and also a natural target for symbolic proof.
Several works in the literature apply non-termination proving to small, self-contained benchmarks, but it has
not been developed for large, real-world projects; as such, despite its allure, non-termination proving has had
limited practical impact. We develop a compositional theory for non-termination proving, paving the way for its
scalable application to large codebases. Discovering non-termination is an under-approximate problem, and we
present UNTer, a sound and complete under-approximate logic for proving non-termination. We then extend
UNTerwith separation logic and develop UNTersl for heap-manipulating programs, yielding a compositional
proof method amenable to automation via under-approximation and bi-abduction. We extend the Pulse

analyser from Meta and develop Pulse
∞, an automated, compositional prover for non-termination based on

UNTersl. We have run Pulse
∞ on large codebases and libraries, each comprising hundreds of thousands of

lines of code, including OpenSSL, libxml2, libxpm and CryptoPP; we discovered several previously-unknown
non-termination bugs and have reported them to developers of these libraries.
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1 Introduction

Why Prove Non-termination? Non-termination (divergence) is a fundamental problem in
computer science, dating back to the halting problem. Assuming an unbounded memory or tape,
neither it nor its complement is recursively enumerable, making it difficult to approach using
testing. This makes non-termination an attractive target for symbolic proof techniques.
Apart from its fundamental nature, one can also ask: is non-termination a practical problem?

To understand this better we manually evaluated the bugs in the Common Vulnerabilities and
Exposures (CVE) database for security bugs that are due to non-termination, e.g. denial-of-service
attacks. We found 916 such CVE’s between 2000 and 2022 – see the extended version [Raad et al.
2024a, §A]. (For ongoing computations such as operating systems, potential non-termination is
desirable and unavoidable. Here, we are concerned with buggy, unintended non-termination.)

Interestingly, we did not detect any reduction in non-termination CVE’s during this period. For
example, we found 4 such bugs from 2000 and 28 from 2022. We stress that our manual approach
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might have missed some non-termination CVE’s, there is more code in 2022 than in 2000, and the
classification of non-termination CVE’s might be non-uniform. This data, however, motivated our
work on the science and engineering of tools for detecting non-termination bugs.

Why Compositional? A compositional analysis is one where the analysis result of a composite
program is computed from those of its constituent parts [Calcagno et al. 2011]. Compositionality
enables program analysis to be deployed as part of a code review process, where code snippets
in a pull request are analysed without the need to re-analyse the entire program (or even to have
an entire program, which might not yet exist). A case study from Facebook [Distefano et al. 2019]
describes how deploying a compositional static analysis tool on pull requests achieved a 70% fix rate,
while the same analysis had a near 0% fix rate for a batch deployment (where a list of bugs is given
outside of code review). This illustrates how a deployment of static analysis that meets programmers
in their workflows can have considerable advantages over ones that ask them to leave their flow.
(See the Facebook article [Distefano et al. 2019] and a related article from Google [Sadowski et al.
2018] for more information.)

It stands to reason that if an accurate non-termination prover is developed which is fast enough
to be deployed at pull-request time, then it would have the potential to have more non-termination
bugs fixed, early. We will not in this paper go so far as setting up an industrial deployment of
non-termination proving in the CICD system of a company, but we take the Facebook/Google
experience referenced above as motivation for our scientific goals: to establish a compositional proof
method together with an algorithm which allow for automatic compositional program analysis,
and initial experiments to probe its feasibility.

Our Approach. Proving non-termination is an under-approximation problem as the aim is to
establish the existence of non-terminating executions. Therefore, for compositional reasoning it is
natural to consider a formalism akin to incorrectness logic (IL) [O’Hearn 2019], which brings the
compositional nature of Hoare logic to bug proving. It turns out the form of under-approximation
we need is a reversed form of that in IL, based on what is called the ‘backwards under-approximate
triple’ by Möller et al. [2021] and the ‘total Hoare triple’ by de Vries and Koutavas [2011].
The backwards under-approximate (BUA) triple ⊢B

[
𝑝
]
C

[
ok : 𝑞

]
denotes that 𝑝 is a subset of

the states from which 𝑞 can be reached executing C. That is, from any state in 𝑝 it is possible
to reach some state in 𝑞 by executing C. This triple is forwards in terms of reachability, but
backwards in terms of under-approximation (mirroring IL): 𝑝 under-approximates the weakest
possible precondition, wpp, of C on 𝑞: 𝑝 ⊆ wpp(C, 𝑞). Here, wpp is the inverse image of the C
(relational) semantics, obtained by running Dijkstra’s strongest post-condition on the reversal of C.

We next extend our BUA triples with under-approximate divergence triples. Specifically, we
develop under-approximate non-termination logic (UNTer), where we write ⊢

[
𝑝
]
C [∞] to denote

that every state in 𝑝 leads to a divergent (infinite) execution via C. Note that this does not state
that every execution diverges; rather, that each pre-state leads to some divergent execution.

⊢B
[
𝑝 ∧ 𝐵

]
C

[
ok : 𝑝 ∧ 𝐵

][
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

We can then state a proof rule for divergence as shown across. The
idea behind this rule is simple. As 𝑝 ∧ 𝐵 holds initially, after one loop
iteration we can get to a state where 𝑝 ∧ 𝐵 continues to hold because
of the BUA triple in the premise. And in that case we can take one more
step, ad infinitum.
This proof method is related to a method of non-termination testing whereby one looks for a

concrete state to which a loop returns: this would witness divergence as one can get back to the
same state again. As a testing method this approach is incomplete, in the presence of unbounded
resources (e.g. a Turing machine tape) which gives rise to infinitely many states: then it is possible
to diverge without returning to the same state twice. But the proof method uses a logical assertion
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and not a concrete state, and is indeed complete for proving non-termination as we show later
(take 𝑝 to be the set of all states that lead to divergence). The proof method is also related to the
idea of ‘recurrence sets’ by Gupta et al. [2008] (see §8 for the relation to their and other work).

Our aim is to automate divergence proof rules such as that above. There are several key observa-
tions in our approach. First, and remarkably, if we apply the strategy used commonly in abstract
interpretation, namely iterating the abstract semantics of loops until we reach a fixpoint, then we
will have proven non-termination of a loop when a fixpoint is reached. In abstract interpretation this
would not imply divergence, but with our under-approximate UNTer logic it does. However, while
we can employ the usual method of fixpoint iteration, since not all loops diverge, we additionally
need a way to stop the analysis before a fixpoint is reached. It turns out that we can employ similar
techniques to IL and bounded model checking, by simply stopping after some fixed number of
iterations even when we do not have a fixpoint. This flexibility is not available in Hoare logic, or in
over-approximate abstract interpretation, where stopping early is unsound.
Second, by detailing the relationship to the original IL we reveal additional possibilities for

automation. Indeed, the BUA proof system is almost the same as that of IL, with the difference
limited to the rule of consequence (see §2, §3). The use of the backwards predicate transformer
wpp perhaps suggests to attempt a backwards program analysis, at least for a whole-program
analysis: given a post, such an analysis would compute an under-approximation of backwards
reachability at each program point; in a sense, themirror image of Floyd’smethod of calculating over-
approximations for forwards reachability. However, a forwards-running analysis is also possible, as
long as we abduce preconditions as we go forwards: this semantics calculates a collection of triples
at each program point, connecting procedure-entry to the program point. In addition to furnishing a
compositional inter-procedural analysis, abduction is necessary here: there is no forwards predicate
transformer semantics, evidenced by the fact that for some programs C and pre-conditions 𝑝 there
is no post-condition delivering a valid triple ⊢B

[
𝑝
]
C

[
ok : ??

]
.

The third key point for automation is that the close connection between the BUA and original
IL proof theories suggests a method of automation that leverages separation logic [Ishtiaq and
O’Hearn 2001], and which is obtained by small changes and a fundamental addition to the existing
Pulse program analyser [Le et al. 2022] from Facebook. We observe that Pulse uses a restricted
version of the rule of consequence, making it compatible both with BUA and IL triples. We thus
develop UNTersl as an extension of UNTer (with divergent triples) with separation logic

Our Pulse∞ Prototype. To demonstrate the feasibility of UNTersl, we have developed Pulse
∞,

a prototype compositional non-termination prover underpinned by UNTersl, as an extension of
the existing Pulse program analyser (which is underpinned by the ISL theory [Raad et al. 2020]
and is compatible with BUA reasoning). To evaluate Pulse∞, we have compared its performance
against cutting edge tools such as DynamiTe [Le et al. 2020] by running it on the state-of -the-art
non-linear arithmetic extension of the SV-COMP benchmark. While Pulse∞ is not comparable to
these tools in the divergence bugs it found, in that Pulse∞ successfully found divergence bugs that
were undetected by these tools, while missed others found by these tools (see Table 2 on p. 22),
it reported zero false positives thanks to its under-approximate nature, in contrast to DynamiTe
which suffered several false positives.

More significantly, we have successfully run Pulse
∞ on large codebases and libraries, each

comprising hundreds of thousands of lines of code (LOC), including OpenSSL, libxml2, CryptoPP
and libxpm. To our knowledge, Pulse∞ is the first automated tool for detecting divergence bugs in
large code bases and libraries. As we discuss in the related work (§8), existing tools either focus on a
small class of (integer) C programs without functions calls (thus excluding libraries), or stipulate
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1 int http_server_get_asn1_req(const ASN1_ITEM *it, ASN1_VALUE **preq,
2 char **ppath, BIO **pcbio, BIO *acbio, (...)) {
3 for (;;) {
4 char *key, *value;
5 len = BIO_gets(cbio, inbuf, sizeof(inbuf));
6 if (len <= 0) goto out;
7 key = inbuf;
8 value = strchr(key, ':');
9 if (value == NULL) goto out;
10 *(value++) = '\0'; }
11 }

Listing 1. A divergence bug found by Pulse
∞
in OpenSSL

the presence of a main procedure (once again ruling out libraries), or require that the code under
analysis be confined to a single file (thus precluding large code bases).

Using Pulse∞, we have automatically analysed each of these librarieswithin minutes. For instance,
running Pulse

∞ on OpenSSL (804 kLOC) completed under two minutes and found four hitherto-
unknown divergence bugs. Indeed, we have found new divergence bugs in OpenSSL, libxml2,
CryptoPP and libxpm. In the cases of CryptoPP and libxpm we have submitted pull requests with
patches. In the case of libxml2, we shared our findings with the development team, who suggested
the reported code branches may be unreachable, and thus should be removed entirely from the
codebase. For OpenSSL, we present a divergence bug found by Pulse

∞ in Listing 1, containing a
potential infinite for loop on lines 3–10. Specifically, the function shown can keep reading more
data with BIO_gets (line 5) and never break from the loop. This analysis requires inter-procedural,
heap and arithmetic reasoning all at once, which is not uncommon in real-world code. We contacted
a senior OpenSSL developer about this bug, who confirmed that the code should be made more
restrictive and enforce an upper bound on the amount of data read at this location.

Contributions and Outline. In §2 we present an intuitive overview of BUA and IL reasoning,
and describe how we extend them to reason about non-termination. In §3 we present UNTer as a
BUA proof system and extend it to account for non-termination, yielding a compositional proof
method. In §4 we present several examples of divergence and show how we can detect them using
UNTer. In §5 we present the semantic model of UNTer and show that it is sound and complete. In
§6 we develop UNTersl by extending UNTer with separation logic for heap reasoning. In §7 we
extend the under-approximate reasoning framework of Pulse to develop Pulse

∞, an automated,
compositional prover for non-termination; we evaluate Pulse∞ against other tools in the literature,
and report our results of running Pulse

∞ on large libraries. We discuss related work in detail in §8.

2 Overview

Incorrectness Logic and Under-Approximate Reasoning. As Godefroid [2005] argues, the
main value of analysis tools lies in the discovery of bugs, not in the proof of program correctness.
A bug presented to a developer is often a more convincing utility of a tool than a correctness
proof, which is often carried out under certain assumptions that may not hold. This is evidenced
by the recent trend in under-approximate reasoning techniques [O’Hearn 2019; Raad et al. 2020,
2022] and their significant success at finding bugs on an industrial scale [Blackshear et al. 2018; Le
et al. 2022]. Specifically, Incorrectness logic (IL) [O’Hearn 2019] presented an under-approximate
formal foundation for bug detection. It was later extended to enable compositional bug detection
in heap-manipulating programs [Raad et al. 2020], and to support concurrency [Raad et al. 2022,
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2023]. IL and its later extensions are instances of under-approximate reasoning and are associated
with no-false-positives theorems, ensuring that all bugs identified by them are true positives.

Intuitively, the under-approximate nature of IL stems from considering a subset of program
behaviours. More concretely, given a program C whose behaviours (traces) is given by the set 𝑆 ,
IL reasoning considers a subset (under-approximated) 𝑆𝑢 ⊆ 𝑆 of the C behaviours. This makes
IL ideally suited for bug-detection as it guarantees no-false-positives: if one detects a bug in the
smaller set 𝑆𝑢 , then the bug is also guaranteed to be in 𝑆 and thus exhibited by C. This is in
contrast to over-approximate reasoning techniques such as Hoare logic, where one considers a
superset (over-approximated) set 𝑆𝑜 ⊇ 𝑆 of C behaviours, making them ideal for verification (as
they guarantee no false negatives): if one can show that the larger set 𝑆𝑜 contains only correct
behaviours, then the smaller set 𝑆 also contains correct behaviours only.
An IL triple, also referred to as a forward, under-approximate (FUA) triple, is of the form ⊢F [𝑝]

C [𝜖 :𝑞], where F hints at its forward direction, denoting that 𝑞 is a subset of program behaviours
when C is run (forward) from the states in 𝑝 . In other words, an FUA triple describes backward
reachability: every post-state in 𝑞 is reachable by running C forward on some pre-state in 𝑝 . The 𝜖 is
an exit condition and may be either ok, to denote a normal execution or er to denote an erroneous
execution. For instance, executing an explicit error (e.g. assert(false)) terminates erroneously and
the underlying states are unchanged: ⊢F [𝑝] error [er : 𝑝]. The under-approximate nature of FUA
triples is best illustrated by their rules for reasoning about branches and loops. To show that a
behaviour is possible when executing C1 + C2 (where + denotes non-deterministic choice), it is
sufficient to show the behaviour is possible when executing one of the branches, i.e. executing C𝑖

for some (rather than all) 𝑖 ∈ {1, 2}, as shown in ChoiceF below (left). Similarly, to show a behaviour
is possible when executing C★ (where C★ denotes a non-deterministic loop, executing C for zero or
more iterations), it suffices to show it is possible when executing C for a particular number 𝑛 ∈ N
of iterations, as shown in LoopF below (right), where C𝑛 denotes executing C for 𝑛 times.

ChoiceF
⊢F [𝑝] C𝑖 [𝜖 :𝑞] for some 𝑖 ∈ {1, 2}

⊢F [𝑝] C1 + C2 [𝜖 :𝑞]

LoopF
⊢F [𝑝] C𝑛 [𝜖 :𝑞] for some 𝑛 ∈ N

⊢F [𝑝] C★ [𝜖 :𝑞]

Non-termination and Under-Approximate Reasoning. Existing literature includes a large
body of work [Berdine et al. 2007, 2006; Chawdhary et al. 2008; Cook et al. 2006a,b; da Rocha Pinto
et al. 2016; D’Osualdo et al. 2021; Liang and Feng 2016] on termination analysis, proving that
a program C always terminates by showing that all traces of C terminate for all given inputs.
Showing that a program C terminates is compatible with over-approximate reasoning frameworks.
Specifically, when the traces of C are given by the set 𝑆 , showing that all traces in a larger set 𝑆𝑜 ⊇ 𝑆

terminate is sufficient for showing that all traces in 𝑆 terminate. Showing termination is difficult in
the presence of loops: to show that a loop 𝐿 terminates typically involves the challenging task of
establishing a loop invariant as well as a well-founded measure (a.k.a. a ranking function) that is
decreased after each iteration. Establishing such invariants and measures is far from straightforward
and typically involves reasoning about ordinal (rather than natural) numbers.

Showing that a program C does not terminate is compatible with under-approximate reasoning:
when the traces ofC are given by the set 𝑆 , showing that the traces in a smaller (under-approximate),
possibly singleton, set 𝑆𝑢 ⊆ 𝑆 do not terminate is sufficient for showing that C does not terminate.

Inspired by the success of under-approximate analysis techniques and their industrial application
of detecting bugs at scale, we develop under-approximate, non-termination logic (UNTer) as the
first formal, under-approximate foundation for detecting non-termination bugs. As with existing
under-approximate techniques, UNTer is associated with a no-false-positives theorem, ensuring
that all non-termination bugs identified are true positives. More concretely,UNTer enables deriving
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under-approximate, divergent triples of the form
[
𝑝
]
C [∞], stating that starting from the states in 𝑝

program C has divergent (non-terminating) traces. Note that
[
𝑝
]
C [∞] does not state that C never

terminates (i.e. that all traces of C are divergent), but rather that it is possible for C not to terminate
(i.e. some traces of C are divergent). For instance, given the program C ≜ skip + (while (true) skip),
the triple

[
true

]
C [∞] is valid, since starting from any state (in true) C can always diverge by

taking the right branch, even though taking the left branch would immediately lead to termination.

Divergent Triples and FUA Triples. As in the existing formal systems for reasoning about
programs (be they over- or under-approximate), we should ideally reason about non-termination
in a compositional fashion. For instance, given C𝐿 ≜ 𝑥 := 1;while (𝑥 > 0) 𝑥++ and an arbitrary
initial value 𝑣 , to show that the triple

[
𝑥 = 𝑣

]
C [∞] holds (i.e. C𝐿 does not terminate starting from

states satisfying 𝑥 = 𝑣), we should ideally show that 1) running 𝑥 := 1 on states in which 𝑥 = 𝑣

terminates and modifies the states to those where 𝑥 = 1; and 2) running while (𝑥 > 0) 𝑥++ on
states where 𝑥 = 1 diverges, i.e.

[
𝑥 = 1

]
while (𝑥 > 0) 𝑥++ [∞]. To do (1), we need to reason about

non-divergent (terminating) program executions in an under-approximate fashion. At first glance,
this seems an ideal job for FUA triples as they under-approximate reachable program behaviours
upon termination; as such, to establish (1), we could simply show ⊢F

[
𝑥 = 𝑣

]
𝑥 := 1

[
ok : 𝑥 = 1

]
.

A key feature of our UNTer framework is proof rules for establishing when a loop does not
terminate. As a first naive attempt, we can propose the LoopBad rule below (left), stating that if
initially the while condition 𝐵 holds, and executing one iteration of the loop body C starting from
𝑝 leaves the states (𝑝) and the loop condition (𝐵) unchanged, then while (𝐵) C diverges.

LoopBad
⊢F

[
𝑝 ∧ 𝐵

]
C

[
ok : 𝑝 ∧ 𝐵

][
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

LoopFix
⊢B

[
𝑝 ∧ 𝐵

]
C

[
ok : 𝑝 ∧ 𝐵

][
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

On closer inspection, however, this rule is unsound. Consider the program while (𝑥 > 0) 𝑥−−; this
program always terminates regardless of the value of 𝑥 (for non-positive values the loop is never
entered; positive values are eventually decremented to zero). As such, the triple

[
𝑥 > 0

]
while (𝑥 >

0) 𝑥−− [∞] is invalid. Nevertheless, we can derive it using LoopBad by showing ⊢F
[
𝑥 > 0

]
𝑥−−[

ok : 𝑥 > 0
]
. Specifically, the ⊢F

[
𝑥 > 0

]
𝑥−−

[
ok : 𝑥 > 0

]
triple stipulates that every post-state in

𝑥 > 0 be reachable from some pre-state in 𝑥 > 0, which is indeed the case. More concretely, consider
an arbitrary post-state s𝑞 ∈ 𝑥 > 0 and let s𝑞 (𝑥) = 𝑣 (i.e. 𝑥 holds value 𝑣 in s𝑞) for some 𝑣 > 0. State
s𝑞 is then reachable by running 𝑥−− on a state s𝑝 = s𝑞 [𝑥 ↦→ 𝑣+1] and s𝑝 ∈ 𝑥 > 0 (as 𝑣 > 0).

Backward Under-Approximate Triples. Intuitively, the problem lies in the backward reacha-
bility of FUA triples: it stipulates that each post-state be reachable from some pre-state, which does
not necessarily lead to divergence. In other words, having a backward chain of C executions from
𝑝 ∧𝐵 to 𝑝 ∧𝐵 does not yield an infinite execution. Instead, we need a forward chain of C executions
from 𝑝 ∧ 𝐵 to 𝑝 ∧ 𝐵, as we can then repeat this execution forward ad infinitum. This is captured
in the LoopFix rule above (right), where a backward, under-approximate (BUA) triple ⊢B [𝑝] C
[𝜖 :𝑞] states that every pre-state in 𝑝 reaches some post-state in 𝑞 by executing C. Therefore, if we
show that each iteration of the loop body transitions each pre-state in 𝑝 ∧ 𝐵 to some post-state
also in 𝑝 ∧ 𝐵, then we can repeat this transition infinitely, leading to divergence. Note that in the
example above, we cannot show ⊢B

[
𝑥 > 0

]
𝑥−−

[
ok : 𝑥 > 0

]
(unlike the ⊢F variant): given state

s𝑝 ∈ 𝑥 > 0 with s𝑝 (𝑥) = 1, running 𝑥−− on s𝑝 yields a state s𝑞 = s𝑝 [𝑥 ↦→ 0], which is not in 𝑥 > 0.
As such, using LoopFix, we cannot derive the invalid triple

[
𝑥 > 0

]
while (𝑥 > 0) 𝑥−− [∞]. Note

that while BUA triples describe forward reachability, they denote backward under-approximation:
𝑝 ⊆ wpp(C, 𝑞), where wpp(C, 𝑞) denotes running C backwards from 𝑞. That is, BUA triples mirror
FUA ones (which describe backward reachability but forward under-approximation).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 280. Publication date: October 2024.



Non-termination Proving at Scale 280:7

In order to present our divergence proof rules in a compositional fashion, we thus use BUA
triples to describe normal, terminating executions. For instance, in order to show that C1;C2 does
not terminate starting from 𝑝 , we can show either C1 does not terminate starting from 𝑝 (i.e.

[
𝑝
]

C1 [∞]), or C1 terminates normally transforming the states to 𝑞, and C2 does not terminate starting
from 𝑞 (i.e. ⊢B

[
𝑝
]
C1

[
ok : 𝑞

]
and

[
𝑞
]
C2 [∞]). This is captured by the Div-Seq1 and Div-Seq2 rules

in Fig. 2 (§3), where we present our full set of proof rules for detecting divergence.

Forward versus Backward Under-Approximate Triples. As with FUA triples, BUA triples are
also inherently under-approximate. Most notably, as we show in §3, the BUA rules for reasoning
about branches and loops are identical to their FUA counterparts; i.e. the ⊢F in ChoiceF and LoopF
above can simply be replaced with ⊢B (see Fig. 1). Indeed, almost all FUA and BUA proof rules
coincide, and the only difference between FUA and BUA rules lie in their associated rules of
consequence, namely the ConsF (for FUA) and ConsB (for BUA) rules in Fig. 1 (p. 10). However,
as we describe shortly, in the practical context of industrially-deployed (under-approximate) bug
detection tools such as Pulse [Le et al. 2022], it is straightforward to reconcile this difference
between FUA and BUA and to develop a unified, under-approximate reasoning framework.
The main application of the FUA rule of consequence, ConsF, is in conjunction with the rule

of disjunction, Disj in Fig. 1 (p. 10). More concretely, when a given program contains multiple
branches, thanks to the ChoiceF rule, we can analyse each branch (and not necessarily all branches)
in isolation and generate a separate triple. Subsequently, we can merge them into a single triple
using Disj. However, when there are many branches (and subsequently many disjuncts in the pre-
and post-states), we can simply use ConsF to drop some of the disjuncts in the post-states. (Note
that using ConsB analogously allows us to drop some of the disjuncts in the pre-states.)

However, as our conversations with the lead engineer behind Pulse have revealed, in the practical
setting of such tools this scenario rarely arises, and it is handled differently when it does. Specifically,
different triples of a program are not merged very often, as it is simpler and more efficient to keep
them separate. Second, when triples are merged, they are done so in a fashion that additionally
tracks the correspondence between the disjuncts in the pre- and post-states. Specifically, note
that the Disj rule is lossy: while in its premise we know that the post-states in 𝑞1 (resp. 𝑞2) are
reached from the pre-states in 𝑝1 (resp. 𝑝2), we lose this correspondence in the conclusion and
only know that the post-states in 𝑞1 ∨ 𝑞2 are reached from the pre-states in 𝑝1 ∨ 𝑝2. As such, when
merging the triples ⊢F [𝑝1] C [𝜖 :𝑞1] and ⊢F [𝑝2] C [𝜖 :𝑞2] into ⊢F [𝑝1 ∨ 𝑝2] C [𝜖 :𝑞1 ∨ 𝑞2], Pulse
additionally tracks the correspondence between 𝑝1 and 𝑞1 (resp. 𝑝2 and 𝑞2). This is beneficial when
later dropping branches: when dropping the disjuncts in the post-states (e.g. 𝑞2), we can also drop
their associated pre-states (𝑝2). This allows us to avoid accumulating ‘clutter’ in the pre-states and
is tantamount to dropping a full triple rather than its post-states only.

We thus follow a similar approach here which allows us to unify FUA and BUA reasoning. More
concretely, we introduce the notion of indexed disjunctions, 𝑃,𝑄 ∈ N fin→ P(State). Intuitively,
an indexed disjunction 𝑃 can be flattened into a standard disjunction as

∨
𝑖∈dom(𝑃 ) 𝑃 (𝑖). We write

[𝑃] C [𝜖 :𝑄] as a shorthand for dom(𝑃)=dom(𝑄) ∧ ∀𝑖 ∈ dom(𝑃). [𝑃 (𝑖)] C [𝜖 :𝑄 (𝑖)], denoting a
merged set of triples. Note that a triple [𝑝] C [𝜖 :𝑞] can be simply lifted to [𝑃] C [𝜖 :𝑄], where
dom(𝑃)=dom(𝑄)= {0} with 𝑃 (0)=𝑝 and 𝑄 (0)=𝑞. We can then use the DisjTrack rule (Fig. 1 on
p. 10) to merge indexed disjuncts – note that the dom(𝑃1) ∩ dom(𝑃2) = ∅ premise can be simply
satisfied by renaming the domain of 𝑃2. Observe that unlike the Disj rule, DisjTrack is not lossy and
preserves the pre-post correspondence. Finally, the unified rule of consequence, Cons (Fig. 1), allows
us to drop matching disjuncts from both the pre- and post-states, where 𝑃 ↓ 𝐼 denotes restricting
the domain of 𝑃 to 𝐼 . The unified Cons rule can be used for both FUA and BUA reasoning.
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Unified Triples and Bug Catching Tools. Note that the rules in Fig. 1, excluding ConsB, ConsF
and Disj (and instead including Cons and DisjTrack) correspond to the reasoning principles used in
the industrially deployed Pulse tool. That is, although Pulse is formally underpinned by IL (with
FUA triples), it does not use ConsF and Disj, and instead uses Cons and DisjTrack, meaning that
using our unified rules (suitable for both FUA and BUA reasoning) has no practical ramifications,
and we can use Pulse as it is! This is indeed great news: in order to reason about divergence, we
can extend Pulse without changing its underlying principles, and simply add our divergence rules.

Theoretical Connection between BUA and FUA Triples. Note that while it is useful to have
both FUA and BUA triples, theoretically speaking, only the BUA triples are needed for proving
non-termination. As such, the BUA proof system constitutes one of our main contributions (while
the FUA proof system was previously developed by de Vries and Koutavas [2011]; O’Hearn [2019].
Moreover, as mentioned above, with the exception of their associated rules of consequence (ConsF
and ConsB in Fig. 1) all other FUA and BUA reasoning principles and proof rules coincide. In §5
we bolster this intuition (Theorem 10) by showing that given any under-approximate triple [𝑝] C
[𝜖 :𝑞], if [𝑝] C [𝜖 :𝑞] is a valid FUA triple and its pre-states (𝑝) are FUA-minimal, then [𝑝] C [𝜖 :𝑞]
is also a valid BUA triple. The pre-states 𝑝 are FUA-minimal if for all smaller pre-states 𝑝 ′ ⊂ 𝑝 , the
triple [𝑝 ′] C [𝜖 :𝑞] is not a valid FUA triple. Intuitively, this ensures that pre-states 𝑝 have not been
arbitrarily weakened (grown) using ConsF.
Conversely, we show that given an under-approximate triple [𝑝] C [𝜖 :𝑞], if [𝑝] C [𝜖 :𝑞] is a

valid BUA triple and its post-states (𝑞) are BUA-minimal, then [𝑝] C [𝜖 :𝑞] is also a valid FUA triple.
Analogously, 𝑞 is BUA-minimal if for all smaller 𝑞′ ⊂ 𝑞, the triple [𝑝] C [𝜖 :𝑞′] is not a valid BUA
triple. This ensures that the post-states 𝑞 have not been arbitrarily weakened using ConsB.

Formal Interpretation of Divergent Triples. As discussed above, we write a divergent triple
of the form

[
𝑝
]
C [∞] to denote that C has some divergent trace(s) (i.e. in an under-approximate

fashion) starting from 𝑝 . The next question to answer when interpreting such triples is whether
there is some divergent trace starting from every state in 𝑝 or some state in 𝑝 . Observe that both
interpretations are under-approximate as they pertain to some rather than all traces of C. Although
the latter interpretation is a weaker statement, it is nevertheless sufficient for an under-approximate
divergence detection framework: to establish divergence it suffices to show some divergent trace
is possible from some initial state in 𝑝 . However, under this weaker interpretation, inspecting a
divergent triple

[
𝑝
]
C [∞] yields little information on how the divergence arises (which may be

needed for debugging and fixing the cause of divergence): as 𝑝 may contain many states, it is
unclear which state(s) in 𝑝 lead(s) to divergence (unless 𝑝 describes a single state). On the other
hand, the former, stronger interpretation provides more information for debugging and fixing the
cause of divergence as it states that starting from any state in 𝑝 the program has a divergent trace.
Although more useful, at first glance this stronger interpretation may seem too strong and

antithetic to the spirit of under-approximation in UNTer. However, this additional strength is not
accompanied by a theoretical or practical cost. In theoretical terms, rather than considering an
arbitrarily large set of pre-states that contain some states that may lead to divergence, one can
always shrink the pre-states to contain exactly those states that lead to divergence. More concretely,
when starting from a state s executing C may diverge, one can establish

[
𝑝
]
C [∞] by defining 𝑝

as the singleton set {s}, rather than an arbitrarily large set that contains s. In practical terms, this
stronger interpretation incurs no additional cost when extending an existing under-approximate
tool such as Pulse with divergence proof rules. In particular, the divergence rules in Fig. 2 (p. 12) fall
into one of two categories: 1) base rules, where the premises contain BUA triples only (e.g. LoopFix
above or Div-Loop in Fig. 2); or 2) inductive cases, where the premises contain other divergent
triples (e.g. Div-Seq1 in Fig. 2) or a combination of divergent and BUA triples (e.g. Div-Seq2 in Fig. 2).
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For the base cases such as LoopFix, thanks to the forward reachability of BUA triples, we already
establish the desired result for every pre-state. Moreover, as discussed above, the BUA and FUA
reasoning principles are almost identical and can be easily unified for practical purposes. As such,
extending exiting under-approximate tools with a base case under a strong interpretation incurs
no additional cost. Similarly, establishing an inductive case requires establishing its premises, and
since neither their BUA premises (as argued above) nor their divergent premises (by inductive
hypothesis) incur an additional cost, establishing an inductive case under a strong interpretation
incurs no additional cost. We therefore opt for the stronger under-approximate interpretation of
divergent triples:

[
𝑝
]
C [∞] denotes that every state in 𝑝 leads to some divergent trace.

3 The UNTer Framework

We present the UNTer framework for detecting non-termination bugs. To present the key ideas
underpinning UNTer more clearly, here we develop it as an analogue of Hoare logic/incorrectness
logic (IL), in that UNTer enables global and not local (compositional) reasoning as in separation
logic (SL) [Ishtiaq and O’Hearn 2001] and incorrectness separation logic (ISL) [Raad et al. 2020].
Later in §6 we develop an extension of UNTer that marries the compositionality of SL/ISL with
the divergence reasoning of UNTer.

Programming Language. To keep our presentation concise, we employ a simple imperative
programming language given by the C grammar below. Our language comprises the standard
constructs of skip, assignment (𝑥 := 𝑒), assume statements (assume(𝐵)), scoped variable declaration
(local 𝑥 in C), sequential composition (C1;C2), non-deterministic choice (C1 + C2) and loops (C★),
as well as explicit error statements (error, which can be thought of e.g. as assert(false)).

C ::= skip | 𝑥 := 𝑒 | assume(𝐵) | local 𝑥 in C | error | C1 + C2 | C1;C2 | C★

As is standard, deterministic choice and loops can be encoded using their non-deterministic counter-
parts and assume statements. Specifically, if (𝐵) thenC1 else C2 can be encoded as (assume(𝐵);C1)+
(assume(¬𝐵);C2), and while (𝐵) C can be encoded as (assume(𝐵);C)★; assume(¬𝐵).

Assertions (Sets of States). The UNTer assertion language is given by the simple grammar
below, comprising classical (first-order logic) and Boolean assertions, where ⊕ ∈ {=,≠, <, ≤, · · · }.
Other classical connectives can be encoded using existing ones (e.g. ¬𝑝 ≜ 𝑝 ⇒ false). We use 𝑝 , 𝑞,
𝑟 and their variants (e.g. 𝑝 ′) as metavariables for assertions. An assertion describes a set of states,
where each state is a (variable) store in Store ≜ Var → Val, mapping program variables to values.

Ast ∋ 𝑝, 𝑞, 𝑟 ::= false | 𝑝 ⇒ 𝑞 | ∃𝑥 . 𝑝 | 𝑒 ⊕ 𝑒 ′

An expression 𝑒 is interpreted under a variable store, written as s(𝑒); this interpretation is standard
and elided here. We interpret assertions as sets of states, and thus write false for ∅, 𝑝 ∨ 𝑞 for 𝑝 ∪ 𝑞,
𝑝 ⇒ 𝑞 for state set inclusion (𝑝 ⊆ 𝑞), and so forth. Similarly, 𝑒 ⊕ 𝑒 ′ denotes sets of states (stores)
in which s(𝑒) ⊕ s(𝑒 ′) holds. As discussed in §2, we introduce the notion of indexed disjunctions,
𝑃,𝑄 ∈ N fin→ P(State), as a map from numbers to assertions (disjuncts); i.e. 𝑃 ≡ ∨

𝑖∈dom(𝑃 ) 𝑃 (𝑖).

UNTer Under-Approximate Proof Rules for Termination. Recall from §2 that to reason
about divergence in a piecemeal fashion, we reason about terminating sub-programs via (under-
approximate) BUA triples. We present the UNTer under-approximate proof rules for terminating
programs in Fig. 1. The rules denoted by ⊢† are 𝐹𝑈𝐴 and 𝐵𝑈𝐴 rules in that they are valid when
interpreted in either the forward (⊢F) or backward (⊢B) direction. Note that as discussed in §2, with
the exception of ConsF and ConsB rules, all rules in Fig. 1 are valid FUA and BUA triples.
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Skip
⊢†
[
𝑝
]
skip

[
ok :𝑝

] Assign
𝑦 ∉ fv(𝑝)

⊢†
[
𝑝
]
𝑥 := 𝑒

[
ok :∃𝑦.𝑝 [𝑦/𝑥] ∧ 𝑥 =𝑒 [𝑦/𝑥]

] Assume
⊢†
[
𝑝∧𝐵

]
assume(𝐵)

[
ok : 𝑝∧𝐵

]
Error
⊢†[𝑝] error [er : 𝑝]

Seq
⊢†
[
𝑝
]
C1

[
ok : 𝑟

]
⊢†[𝑟 ] C2 [𝜖 :𝑞]

⊢†[𝑝] C1;C2 [𝜖 :𝑞]

SeqEr
⊢†[𝑝] C1 [er : 𝑞]

⊢†[𝑝] C1;C2 [er : 𝑞]
Choice
⊢†[𝑝] C𝑖 [𝜖 :𝑞] for some 𝑖 ∈ {1, 2}

⊢†[𝑝] C1 + C2 [𝜖 :𝑞]

Loop0
⊢†
[
𝑝
]
C
★
[
ok : 𝑝

] Loop
⊢†[𝑝] C★;C [𝜖 :𝑞]
⊢†[𝑝] C★ [𝜖 :𝑞]

Loop-Subvar
∀𝑛 < 𝑘. ⊢†

[
𝑝 (𝑛)

]
C

[
ok :𝑝 (𝑛+1)

]
⊢†
[
𝑝 (0)

]
C
★
[
ok : 𝑝 (𝑘)

] Local
⊢†[𝑝] C [𝜖 :𝑞]

⊢†[∃𝑥 .𝑝] local 𝑥 in C [𝜖 :∃𝑥 .𝑞]

Subst
⊢†[𝑝]C [𝜖 :𝑞] 𝑥 ∉ fv(𝑝,C, 𝑞)

(⊢†[𝑝] C [𝜖 :𝑞]) [𝑦/𝑥]
Disj
⊢†[𝑝𝑖 ] C [𝜖 :𝑞𝑖 ] for all 𝑖 ∈ 𝐼

⊢†

[∨
𝑖∈𝐼

𝑝𝑖

]
C

[
𝜖 :

∨
𝑖∈𝐼

𝑞𝑖

] Constancy
⊢†[𝑝] C [𝜖 :𝑞] fv(𝑟 ) ∩mod(C) = ∅

⊢†[𝑝 ∧ 𝑟 ] C [𝜖 :𝑞 ∧ 𝑟 ]

ConsF
𝑝 ′ ⊆ 𝑝 ⊢F [𝑝 ′] C [𝜖 :𝑞′] 𝑞 ⊆ 𝑞′

⊢F [𝑝] C [𝜖 :𝑞]

ConsB
𝑝 ⊆ 𝑝 ′ ⊢B [𝑝 ′] C [𝜖 :𝑞′] 𝑞′ ⊆ 𝑞

⊢B [𝑝] C [𝜖 :𝑞]
DisjTrack
⊢†[𝑃1] C [𝜖 :𝑄1] ⊢†[𝑃2] C [𝜖 :𝑄2]

⊢†[𝑃1 ⊎ 𝑃2] C [𝜖 :𝑄1 ⊎𝑄2]

Cons
⊢†[𝑃] C [𝜖 :𝑄] 𝐼 ⊆ dom(𝑃)

⊢†[𝑃 ↓ 𝐼 ] C [𝜖 :𝑄 ↓ 𝐼 ]
IfTrue

⊢†[𝑝 ∧ 𝐵] C1 [𝜖 :𝑞]
⊢†[𝑝 ∧ 𝐵] if (𝐵) thenC1 else C2 [𝜖 :𝑞]

IfFalse
⊢†[𝑝 ∧ ¬𝐵] C2 [𝜖 :𝑞]

⊢†[𝑝 ∧ ¬𝐵] if (𝐵) thenC1 else C2 [𝜖 :𝑞]

ConsEq
𝑝 ⇔ 𝑝 ′ ⊢†[𝑝 ′] C [𝜖 :𝑞′] 𝑞′ ⇔ 𝑞

⊢†[𝑝] C [𝜖 :𝑞]

WhileFalse
⊢†
[
𝑝 ∧ ¬𝐵

]
while (𝐵) C

[
ok : 𝑝 ∧ ¬𝐵

]
WhileSubvar
∀𝑛 < 𝑘. ⊢†

[
𝑝 (𝑛) ∧ 𝐵

]
C

[
ok : 𝑝 (𝑛+1) ∧ 𝐵

]
⊢†[𝑝 (𝑘) ∧ 𝐵] C [𝜖 :𝑞 ∧ ¬𝐵]

⊢†[𝑝 (0) ∧ 𝐵] while (𝐵) C [𝜖 :𝑞 ∧ ¬𝐵]

Fig. 1. Under-approximate proof rules where † in each rule can be instantiated as F or B; the highlighted

rules can be derived from other rules (see the extended version [Raad et al. 2024a, §B]).

The Skip, Error, Seq, SeqEr, Choice, Loop0, Loop and Disj rules are identical to those of existing
FUA logics [O’Hearn 2019; Raad et al. 2020, 2022]. Specifically, executing skip and error leave the
state unchanged (Skip and Error), where the former terminates normally while the latter terminates
erroneously; Disj allows us to merge multiple triples into one in a lossy fashion (as discussed in
§2); the behaviour of a branching program can be under-approximated as the behaviour of some of
its branches (Choice); and the behaviour of a loop can be under-approximated through bounded
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unrolling as zero (Loop0) or more (Loop) iterations. Note that while in correctness frameworks we
can over-approximate a loop behaviour via an invariant, i.e. an assertion that holds after any number
of iterations (including zero), in FUA/BUA frameworks we can under-approximate a loop behaviour
via a subvariant as an indexed assertion 𝑝 , where 𝑝 (𝑛) describes the state after 𝑛 iterations. This is
captured by Loop-Subvar: for an arbitrary 𝑘 , if executing C terminates normally and transforms
𝑝 (𝑛) to 𝑝 (𝑛+1) for all 𝑛 < 𝑘 , then 𝑝 (𝑘) can be reached by executing C

★ (i.e. executing C for
𝑘 iterations) from the initial states 𝑝 (0). The SeqEr captures the short-circuiting behaviour of
erroneous executions: if C1 terminates erroneously, then C1;C2 also terminates erroneously. By
contrast, Seq captures the case where executing C1 does not encounter an error: if executing C1
terminates normally transforming the states in 𝑝 to those in 𝑟 , and executing C2 terminates as 𝜖
(either ok or er) and transforms 𝑟 to 𝑞, then executing C1;C2 terminates as 𝜖 , transforming 𝑝 to 𝑞.

The Assign rule is identical to the standard Floyd assignment rule and holds for both FUA and
BUA. Observe that as noted by O’Hearn [2019], the Hoare assignment rule is not sound for FUA.
That is, ⊢F

[
𝑝 [𝑒/𝑥]

]
𝑥 := 𝑒

[
ok : 𝑝

]
is not sound (e.g. let 𝑒 = 42 and 𝑝 be 𝑥 = 𝑦, then the state s ∈ 𝑝

such that s(𝑥) = s(𝑦) = 17 cannot be reached by executing 𝑥 := 42 on any state in 𝑝 [42/𝑥]. By
contrast, the Hoare assignment rule is sound for BUA, i.e. ⊢B

[
𝑝 [𝑒/𝑥]

]
𝑥 := 𝑒

[
ok : 𝑝

]
is a sound

BUA triple. However, this difference between BUA and FUA does not have a practical ramification
as the Floyds assignment rule (in Assign) is sufficient to enable automated reasoning in Pulse.
The Assume, Local and Constancy rules are analogous to the FUA rules of [O’Hearn 2019].

Concretely, executing assume(𝐵) terminates normally and leaves the state unchanged, provided that
𝐵 holds beforehand. When executing the scoped variable declaration local 𝑥 in C, the information
about 𝑥 is erased by existentially quantifying it in the pre- and post-states. The Constancy rule is
used to adapt triples in different contexts and states: if an assertion 𝑟 holds before executing C, it
also holds afterwards provided that it does not refer to free variables that may have been modified
by C. This is captured by the fv(𝑟 ) ∩mod(C) = ∅, where fv(𝑟 ) denotes the free variables of 𝑟 and
mod(C) denotes the variables modified by C (i.e. those on the left-hand side of assignments).

As discussed in §2, ConsF and ConsB are the FUA and BUA rules of consequence, respectively. We
reconcile the two in the unified rule of consequence, Cons, by using indexed disjunctions, where
dom(𝑃 ↓ 𝐼 ) = 𝐼 and ∀𝑖 ∈ 𝐼 . (𝑃 ↓ 𝐼 ) (𝑖) = 𝑃 (𝑖). Finally, using indexed disjunctions in DisjTrack we
can merge triples in a non-lossy fashion, preserving the pre-post correspondence.
The remaining highlighted rules can be derived from existing rules (see the extended version

[Raad et al. 2024a, §B]). The IfTrue (resp. IfFalse) is analogous to its non-deterministic counterpart
(Choice) and requires that condition 𝐵 hold (resp. not hold) at the beginning. The ConsEq simply
replaces implication (subset inclusion) in the premises of ConsF and ConsB with equivalence. The
WhileFalse states that the pre-states are unchanged by the loop if the condition 𝐵 does not hold
to begin with (i.e. the loop is never entered). The WhileSubvar is analogous to Loop-Subvar and
states that if for all 𝑛 < 𝑘 an execution of C transforms 𝑝 (𝑛) ∧ 𝐵 to 𝑝 (𝑛+1) ∧ 𝐵, i.e. loop condition
𝐵 remains true in the first 𝑘−1 iterations, and the 𝑘 th iteration results in the states in 𝑞 ∧ ¬𝐵 (i.e.
it invalidates the loop condition), then while (𝐵) C terminates, transforming the initial states in
𝑝 (0) ∧ 𝐵 to those in 𝑞 ∧ ¬𝐵.

UNTer Divergent Proof Rules for Non-Termination. We present the (syntactic) proof rules
for divergence in Fig. 2. Recall from §2 that

[
𝑝
]
C [∞] states that every state in 𝑝 leads to some

divergent trace. We provide the formal semantic interpretation of divergent triples later in §5.
Note that skip, assignment, error and assume statements never diverge. In order to show that

C1;C2 has a divergent trace starting from 𝑝 , we can show either C1 has a divergent trace starting
from 𝑝 (Div-Seq1), or C1 terminates normally transforming the states to 𝑞 and C2 does not terminate
starting from 𝑞 (Div-Seq2). To show that the branching program C1 + C2 has a divergent trace
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Div-Seq1
⊢
[
𝑝
]
C1 [∞]

⊢
[
𝑝
]
C1;C2 [∞]

Div-Seq2
⊢B

[
𝑝
]
C1

[
ok : 𝑞

]
⊢
[
𝑞
]
C2 [∞]

⊢
[
𝑝
]
C1;C2 [∞]

Div-Choice
⊢
[
𝑝
]
C𝑖 [∞] for some 𝑖 ∈ {1, 2}
⊢
[
𝑝
]
C1 + C2 [∞]

Div-LoopUnfold
⊢
[
𝑝
]
C;C★ [∞]

⊢
[
𝑝
]
C
★ [∞]

Div-Loop
⊢B

[
𝑝
]
C

[
ok : 𝑞

]
𝑞 ⊆ 𝑝

⊢
[
𝑝
]
C
★ [∞]

Div-Subvar
∀𝑛 ∈ N. ⊢B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
⊢
[
𝑝 (0)

]
C
★ [∞]

Div-Local
⊢
[
𝑝
]
C [∞]

⊢
[
∃𝑥 .𝑝

]
local 𝑥 in C [∞]

Div-Subst
⊢
[
𝑝
]
C [∞] 𝑦 ∉ fv(𝑝,C)

⊢ (
[
𝑝
]
C [∞]) [𝑦/𝑥]

Div-Cons
⊢
[
𝑝 ′]

C [∞] 𝑝 ⊆ 𝑝 ′

⊢
[
𝑝
]
C [∞]

Div-Disj
⊢
[
𝑝𝑖
]
C[∞] for all 𝑖 ∈ 𝐼

⊢
[∨
𝑖∈𝐼

𝑝𝑖

]
C [∞]

Div-LoopNest
⊢
[
𝑝
]
C [∞]

⊢
[
𝑝
]
C
★[∞]

Div-While
⊢B

[
𝑝∧𝐵

]
C

[
ok : 𝑞∧𝐵

]
𝑞 ⊆ 𝑝

⊢
[
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

Div-WhileNest
⊢
[
𝑝 ∧ 𝐵

]
C [∞]

⊢
[
𝑝∧𝐵

]
while (𝐵) C [∞]

Div-WhileSubvar
∀𝑛 ∈ N. ⊢B

[
𝑝 (𝑛)∧𝐵

]
C

[
ok : 𝑝 (𝑛+1) ∧ 𝐵

]
⊢
[
𝑝 (0) ∧ 𝐵

]
while (𝐵) C [∞]

Fig. 2. The UNTer divergence rules, where the highlighted rules can be derived from other rules

starting from 𝑝 , it suffices to show that some branch C𝑖 has a divergent trace from 𝑝 , i.e. in an
under-approximate fashion. The Div-Cons denotes the rule of consequence for divergence: if C has
some divergent trace starting from any state in 𝑝 ′ and 𝑝 ⊆ 𝑝 ′, then C also has some divergent trace
starting from any state in 𝑝 . The Div-Local rule states that variable declaration diverges if its body
does. The Div-Disj rule denotes that if the states in each of 𝑝𝑖 lead to divergence, then so do the
states in their union. The Div-Subst rule is the substitution rule for divergence and is as expected.[

𝑝
]
C [∞]

(given)[
𝑝
]
C;C★ [∞]

(Div-Seq1)[
𝑝
]
C
★ [∞]

(Div-LoopUnfold)

The remaining rules capture divergence for loops. Specifi-
cally, Div-LoopUnfold allows us to establish divergence after
unrolling the loop once. This can be used for showing diver-
gence in the case of nested loops, where the inner loop di-
verges. Specifically, using a combination of Div-Seq1 and Div-
LoopUnfold we can derive Div-LoopNest as shown across, stating that if one iteration of the loop
body (e.g. a nested loop) has a divergent trace, then the loop itself also has a divergent trace.

The Div-Loop rule states that if one iteration of a loop body terminates normally and transforms
the states in 𝑝 to ones in 𝑞 (i.e. ⊢B

[
𝑝
]
C

[
ok : 𝑞

]
) and 𝑞 ⊆ 𝑝 , then C

★ has a divergent trace starting
from 𝑝 . Intuitively, the forward triple in the premise, 𝐴 ≜ ⊢B

[
𝑝
]
C

[
ok : 𝑞

]
, allows us to construct

an infinite trace of C★ from any state in 𝑝 : given a state in s0 ∈ 𝑝 , (from𝐴) executing C on s0 results
in a state s1 ∈ 𝑞 ⊆ 𝑝 , and thus (from 𝐴) executing C on s1 results in a state s2 ∈ 𝑞 ⊆ 𝑝 , ad infinitum.

The Div-Subvar is the subvariant rule for divergence: if an iteration of the loop body terminates
normally and transforms 𝑝 (𝑛) to 𝑝 (𝑛+1) for an arbitrary 𝑛, then C

★ has a divergent trace starting
from the initial states 𝑝 (0). Note that given any loop body C, if C does not contain a conditional (if
or while) statement and executing C does not encounter an error, then the non-deterministic loop
C
★ always has a divergent trace. However, this is not necessarily the case with conditional if/while
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while (𝑥 = 0)
skip

(a)

while (𝑥 ≥ 0)
𝑥 := 𝑥+1

(b)

𝑥 := 1
𝑦 := 2;
while (𝑥+𝑦 > 1)
𝑥 := 3 − 𝑥

𝑦 := 3 − 𝑦

(c)

while (𝑦 < 100)
if (𝑦 ≤ 50)
𝑥 := 𝑥+1

else

𝑦 := 𝑦+1
(d)

while (𝑦 < 100)
𝑥 := 0;
while (𝑥 ≤ 100)

if (𝑥 = 100)
𝑦 := 0

𝑥 := 𝑥+1
𝑦 := 𝑦+1

(e)

𝑥 := 42; 𝑦 := 1;
while (𝑦 < 100)

while (𝑥 ≤ 100)
if (𝑥 = 100)
𝑥 := 1
𝑦 := 2 × 𝑦

else𝑥 := 𝑥+1
𝑦 := 𝑦+1

(f)

Fig. 3. Several examples of programs with non-terminating behaviours where 𝑥,𝑦 initially hold 0

statements (encoded via assume). This is illustrated in Div-While, requiring that the loop condition
𝐵 hold at the end of an iteration, which is not always the case. For instance, for while (𝑥 = 0) 𝑥 := 1
we fail to establish 𝑥 = 0 after an iteration of 𝑥 := 1. The Div-WhileNest and Div-WhileSubvar rules
are analogous to Div-LoopNest and Div-Subvar, respectively. As before, all highlighted rules in
Fig. 2 can be derived from other rules (see the extended version [Raad et al. 2024a, §B]).

4 Examples

We present several simple examples of divergent programs (with divergent loops) and demonstrate
how we can use our UNTer proof system to detect them. All divergent behaviours presented here,
and many more, have also been detected using our Pulse∞ prototype (see §7).

Example 1 (Fig. 3a). Consider the simple example in Fig. 3a comprising a simple divergent loop.
We can detect this using Div-While (with 𝑝 = 𝑞 = true) as shown below:

⊢B
[
𝑥 = 0

]
skip

[
ok : 𝑥 = 0

] (Skip)[
𝑥 = 0

]
while (𝑥 = 0) skip [∞]

(Div-While)

Example 2 (Fig. 3b). Consider the simple example in Fig. 3b comprising a simple while loop with
a buggy check. We can detect this using Div-While (with 𝑝 = true and 𝑞 = 𝑥 ≥ 1) as shown below:

⊢B
[
𝑥 ≥ 0

]
𝑥 := 𝑥+1

[
ok : ∃𝑣 . 𝑣 ≥ 0 ∧ 𝑥 = 𝑣+1

] (Assign)

⊢B
[
𝑥 ≥ 0

]
𝑥 := 𝑥+1

[
ok : 𝑥 ≥ 1 ∧ 𝑥 ≥ 0

] (ConsEq)
𝑥 ≥ 1 ⊆ 𝑥 ≥ 0[

𝑥 ≥ 0
]
while (𝑥 ≥ 0) 𝑥 := 𝑥+1 [∞]

(Div-While)

Example 3 (Fig. 3c). Consider the example in Fig. 3c. Prior to the first iteration of the loop
𝑥+𝑦 = 3 holds, and although the values of 𝑥 and 𝑦 are updated in each iteration, their sum remains
unchanged after each iteration (i.e. 𝑥+𝑦 = 3) and thus the loop diverges. We present an UNTer
proof outline of this divergent behaviour on the left of Fig. 4. For brevity, rather than giving full
derivations, we follow the classical Hoare logic proof outline, annotating each line of the code with
its pre- and post-states. We further commentate each proof step and write e.g. //Assign to denote
an application of Assign. As in Hoare logic proof outlines, we assume that Seq is applied at every
step; i.e. later instructions are executed only if the earlier ones execute normally (with ok).

Let 𝑝 ≜ 𝑥+𝑦 = 3∧𝑥+𝑦 > 1; after the initial assignment to 𝑥 and𝑦 and applications of ConsEq and
Div-Cons, we establish 𝑝 (line 6). We then apply Div-While (lines 6–14) to show that the loop body
leaves the set of states 𝑝 unchanged (lines 8–13). The proof of lines 8–13 is then straightforward,
and simply involves the applications of Assign and ConsEq.

Example 4 (Fig. 3d). Consider the example in Fig. 3d. At first glance it may seem that the loop
terminates since the value of𝑦 is incremented in the else branch of each iteration. However, starting
from𝑦 = 0, the then branch is taken in each iteration (since𝑦 ≤ 50) and thus𝑦 is never incremented,
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1. [𝑥 = 0 ∧ 𝑦 = 0]
2. 𝑥 := 1; //Assign, ConsEq
3.

[
ok:𝑥 = 1 ∧ 𝑦 = 0

]
4. 𝑦 := 2; //Assign, ConsEq
5.

[
ok:𝑥 = 1 ∧ 𝑦 = 2

]
//Div-Cons

6.
[
ok:𝑥+𝑦 = 3 ∧ 𝑥+𝑦 > 1

]
7. while (𝑥+𝑦 > 1)

D
iv
-W

hi
le

8. [𝑥+𝑦 = 3 ∧ 𝑥+𝑦 > 1]
9. 𝑥 := 3 − 𝑥 //Assign
10.

[
ok:∃𝑣𝑥 . 𝑣𝑥+𝑦 = 3 ∧ 𝑣𝑥+𝑦 > 1

∧ 𝑥 = 3 − 𝑣𝑥

]
11. 𝑦 := 3 − 𝑦 //Assign
12.

[
ok:∃𝑣𝑥 , 𝑣𝑦 . 𝑣𝑥+𝑣𝑦 = 3 ∧ 𝑣𝑥+𝑣𝑦 > 1

∧ 𝑥 = 3 − 𝑣𝑥 ∧ 𝑦 = 3 − 𝑣𝑦

]
//ConsEq
13.

[
ok:𝑥+𝑦 = 3 ∧ 𝑥+𝑦 > 1

]
14. [∞]

1. [𝑥 = 0 ∧ 𝑦 = 0]
//Div-Cons
2. [𝑦 = 0 ∧ 𝑦 < 100]
3. while (𝑦 < 100)

D
iv
-W

hi
le

4. [𝑦 = 0 ∧ 𝑦 < 100]
//ConsEq
5. [𝑦 = 0 ∧ 𝑦 < 100 ∧ 𝑦 ≤ 50]
6. if (𝑦 ≤ 50)

If
Tr

ue

7. [𝑦 = 0 ∧ 𝑦 < 100 ∧ 𝑦 ≤ 50]
8. 𝑥 := 𝑥+1 //Assign
9.

[
ok:∃𝑣𝑥 . 𝑦 = 0 ∧ 𝑦 < 100

∧ 𝑦 ≤ 50 ∧ 𝑥 = 𝑣𝑥+1

]
//ConsEq
10.

[
ok:𝑦 = 0 ∧ 𝑦 < 100

]
11. else · · ·

12.
[
ok:𝑦 = 0 ∧ 𝑦 < 100

]
13. [∞]

Fig. 4. Proof sketches of the divergence bugs in Fig. 3c (left) and Fig. 3d (right)

resulting in divergence. We present an UNTer proof outline of this divergent behaviour on the
right of Fig. 4. After applying ConsEq to rewrite 𝑝 equivalently as 𝑝 ∧ 𝑦 ≤ 50 (line 5), we apply
IfTrue to show we can take the then branch and arrive at 𝑝 (lines 7–10).

Example 5 (Fig. 3e). Consider the example in Fig. 3e with nested loops. Note that the value of 𝑥
is incremented at the end of each iteration of the inner loop and thus the inner loop terminates. By
contrast, although 𝑦 is incremented at the end of each iteration of the outer loop and thus it may
seem at first glance that the outer loop terminates, on closer inspection the value of 𝑦 us reset to 0
in the last iteration of the inner loop. As such, at the end of each iteration of the outer loop 𝑦 is
incremented and updated 1, and thus the outer loop diverges.

We present an UNTer proof outline of this at the top of Fig. 5. After applying Div-Cons to obtain
𝑦 < 100, we apply Div-While (lines 2–23) to show that the loop body leaves 𝑦 < 100 unchanged
(lines 4–22). After the assignment on line 5, we apply ConsEq to rewrite the states as 𝑝 (0) ∧𝑥 ≤ 100
(line 7), with 𝑝 (𝑛) defined below the proof at the top of Fig. 5. We then apply WhileSubvar to show
that at the end of the execution of the inner loop we arrive at 𝑦=0 ∧ 𝑥 =101 ∧ 𝑥 ≰ 100 (lines 7–21).
Note that WhileSubvar has two premises, which we establish in two columns on lines 9–14 and
15–20. On lines 9–14 we show that for 𝑛 < 100, each iteration of the loop transforms 𝑝 (𝑛) ∧𝑥 ≤ 100
to 𝑝 (𝑛+1) ∧ 𝑥 ≤ 100; on lines 15–20 we show that in the final iteration of the loop with 𝑝 (100)
(i.e. when 𝑥 = 100), we reset 𝑦 to 0 and increment 𝑥 , arriving at 𝑦=0 ∧ 𝑥 =101 ∧ 𝑥 ≰100 which is
included in 𝑦<100 (line 22), as per the second premise of Div-While.

Example 6 (Fig. 3f). Consider the nested loops in Fig. 3f. Note that starting with 𝑥 = 42 (after the
initial assignment), the else branch of the inner loop increments 𝑥 in all but the last iteration of the
inner loop (since 𝑥 = 100), whereupon the value of 𝑥 is reset to 1; i.e. the inner loop diverges.

We present an UNTer proof outline of this divergent behaviour at the bottom of Fig. 5. After the
initial assignments (line 2) and applying Div-Cons to arrive at 𝑥 ≤ 100 ∧ 𝑦 < 100 (line 4), we apply
Div-WhileNest (lines 4–21) to show that the loop body diverges (lines 6–20). Once again, we apply
Div-Cons to weaken the states to 𝑥 ≤ 100 (line 7) and subsequently apply Div-While (lines 7–20) to
show that the body of the inner loop leaves the states 𝑥 ≤ 100 unchanged (lines 9–19). To do this,
we first rewrite 𝑥 ≤ 100 equivalently as 𝑥 < 100 ∨ 𝑥 = 100 (line 10), and then apply Disj to show
that either disjunct results in 𝑥 ≤ 100 states (the two columns on lines 11–14 and 15–18). The proof
of each disjunct is then straightforward and is obtained by reasoning about the associated branch.
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1. [𝑥 = 0 ∧ 𝑦 = 0] //Div-Cons
2. [𝑦 < 100]
3. while (𝑦 < 100)

D
iv
-W

hi
le

4. [𝑦 < 100]
5. 𝑥 := 0 //Assign
6.

[
ok:𝑦 < 100 ∧ 𝑥 = 0

]
//ConsEq

7.
[
ok:𝑝 (0) ∧ 𝑥 ≤ 100

]
8. while (𝑥 ≤ 100)

W
hi
le
Su

bv
ar

9. ∀𝑛 < 100. [𝑝 (𝑛) ∧ 𝑛<100 ∧ 𝑥 ≤ 100]
10. if (𝑥 = 100) 𝑦 := 0
11. else skip // IfFalse, Skip
12.

[
ok:𝑝 (𝑛) ∧ 𝑛<100 ∧ 𝑥≤100

]
13. 𝑥 := 𝑥+1 //Assign, ConsEq
14.

[
ok:𝑝 (𝑛+1) ∧ 𝑥 ≤ 100

]
15. [𝑝 (100) ∧ 𝑥 ≤ 100]
16. if (𝑥 = 100) 𝑦 := 0
17. else skip // IfTrue,Assign
18.

[
ok:𝑝 (100) ∧ 𝑥 ≤ 100 ∧ 𝑦 = 0

]
19. 𝑥 := 𝑥+1 //Assign, ConsEq
20.

[
ok:𝑦 = 0 ∧ 𝑥 = 101 ∧ 𝑥 ≰ 100

]
21.

[
ok:𝑦 = 0 ∧ 𝑥 = 101 ∧ 𝑥 ≰ 100

]
22.

[
ok:𝑦 < 100

]
23. [∞]
where for all 𝑛 ∈ N : 𝑝 (𝑛) ≜ 𝑥 = 𝑛 ∧ 𝑦 < 100

1. [𝑥 = 0 ∧ 𝑦 = 0]
2. 𝑥 := 42; 𝑦 := 1; //Assign, ConsEq
3.

[
ok:𝑥 = 42 ∧ 𝑦 = 1

]
//Div-Cons

4.
[
ok:𝑥 ≤ 100 ∧ 𝑦 < 100

]
5. while (𝑦 < 100)

D
iv
-W

hi
le
N
es
t

6. [𝑥 ≤ 100 ∧ 𝑦 < 100] //Div-Cons
7. [𝑥 ≤ 100]
8. while (𝑥 ≤ 100)

D
iv
-W

hi
le

9. [𝑥 ≤ 100] //ConsEq
10. [𝑥 < 100 ∨ 𝑥 = 100]

D
is
j

11. [𝑥 < 100]
12. if (𝑥 = 100) 𝑥 := 1; 𝑦 := 2×𝑦
13. else𝑥 := 𝑥+1

// IfFalse,Assign, ConsEq
14.

[
ok:𝑥 ≤ 100

]
15. [𝑥 = 100]
16. if (𝑥 = 100) 𝑥 := 1; 𝑦 := 2×𝑦
17. else𝑥 := 𝑥+1

// IfTrue,Assign, ConsB
18.

[
ok:𝑥 ≤ 100

]
19.

[
ok:𝑥 ≤ 100

]
20. [∞]

21. [∞]
Fig. 5. Proof sketch of divergence in Fig. 3e (above), where the two columns on lines 9–14 and 15–20 denote

the proof sketches of the two premises of WhileSubvar; proof sketch of divergence in Fig. 3f (below), where

the two columns on lines 11–14 and 15–18 denote the proof sketches of the two premises of Disj.

5 The UNTer Model and Semantics

Instrumented Commands and Operational Semantics. Although in sequential settings the
semantics is given in the big-step fashion [O’Hearn 2019; Raad et al. 2020], we opt for small-step

semantics instead. This is because big-step semantics by definition describe terminating executions,
while our aim is to formalise the semantics of divergent triples. Specifically, as we describe below,
we formalise the semantics of a divergent triple as an infinite, non-terminating execution trace.

Note that local 𝑥 in C declares a variable 𝑥 whose scope is limited to C. To describe the semantics
of local 𝑥 in C in a small-step fashion, we introduce instrumented commands, defined by the grammar
below (where C is as defined in §3), which additionally include the end(𝑥, 𝑣) construct, recording
the existing (old) value of 𝑥 when redeclaring 𝑥 in a new scope.

C ::= C | end(𝑥, 𝑣) | C1;C2
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S-Local
s
′ = s[𝑥 ↦→ 𝑣] 𝑣 ∈ Val

local 𝑥 in C, s −→ C; end(𝑥, s(𝑥)), s′, ok

S-LocalEnd
s
′ = s[𝑥 ↦→ 𝑣]

end(𝑥, 𝑣), s −→ skip, s′, ok

S-Assign
s
′ = s[𝑥 ↦→ s(𝑒)]

𝑥 := 𝑒, s −→ skip, s′, ok

S-Assume
s(𝐵) = true

assume(𝐵), s −→ skip, s, ok

S-Error
error, s −→ skip, s, er

S-Choice
𝑖 ∈ {1, 2}

C1+C2, s −→ C𝑖 , s, ok

S-Seq1
C1, s −→ C′1, s

′, 𝜖

C1;C2, s −→ C′1;C2, s
′, 𝜖

S-SeqSkip
skip;C, s −→ C, s, ok

S-Loop0
C
★, s −→ skip, s, ok

S-Loop
C
★, s −→ C;C★, s, ok

C ∈ {local 𝑥 in C, 𝑥 := 𝑒, assume(𝐵), error,C1 + C2,C★}
C, s⇝

er
skip, s

C1, s⇝er
C′1, s

′

C1;C2, s⇝er
C′1;C2, s

′

end(𝑥, 𝑣), s⇝
er
skip, s[𝑥 ↦→ 𝑣] skip;C, s⇝

er
C, s

Fig. 6. The UNTer small-step transitions (above) and error transitions for restoring variables (below)

We present our small-step semantics in Fig. 6, with transitions of the form C, s −→ C′, s′, 𝜖 , where C
and s respectively denote the current (instrumented) command and store (state), C′ and s

′ denote
their continuations (what they reduce to) and 𝜖 denotes the exit condition, describing whether
reducingC toC′ took place normally (ok) or erroneously (er). As shown in S-Local, when evaluating
local 𝑥 in C under a state s ∈ Store, we assign an arbitrary value 𝑣 to 𝑥 in s, and continue with
executing C followed by end(𝑥, s(𝑥)). That is, we record the existing value of 𝑥 , s(𝑥), so that we
can restore it once the execution of C has ended, as reflected in the S-LocalEnd transition.
The remaining transition rules are standard: assigning 𝑒 to 𝑥 simply evaluates 𝑒 in the current

state (denoted by s(𝑒)) and updates the value of 𝑥 in the state, terminating normally; assume(𝐵)
reduces to skip normally when 𝐵 evaluates to true in the current state; error reduces to skip

erroneously; and C1 + C2 non-deterministically reduces to one of its branches (C𝑖 with 𝑖 ∈ {1, 2}).
When reducing C1;C2, we either reduce the left-hand side until it reduces to skip (S-Seq1), or
continue with the right-hand side when the left side is skip (S-SeqSkip). Finally, we either reduce a
loop to skip, i.e. unroll it zero times (S-Loop0), or unroll it once and continue with C

★ (S-Loop).

Semantic BUA and FUA Triples. Recall that intuitively a BUA triple ⊢B [𝑝] C [𝜖 :𝑞] states that
every pre-state s𝑝 in 𝑝 can reach some post-state s𝑞 in 𝑞 under 𝜖 by executing C. Analogously, a
FUA triple ⊢F [𝑝] C [𝜖 :𝑞] states that every post-state s𝑞 in 𝑞 can be reached from some pre-state
s𝑝 in 𝑝 under 𝜖 by executing C. Put formally, in both cases we must have C, s𝑝

𝑛−→ −, s𝑞, 𝜖 , denoting
that executing C terminates after 𝑛 steps under 𝜖 and transforms s𝑝 to s𝑞 (see Def. 1 below).

Definition 1 (Semantic BUA and FUA triples). A BUA triple is valid, written |=B [𝑝] C [𝜖 :𝑞], iff
for all s𝑝 ∈ 𝑝 , there exists s𝑞 ∈ 𝑞 and 𝑛 such that C, s𝑝

𝑛−→ −, s𝑞, 𝜖 , where:

C, s
𝑛−→ C′, s′, 𝜖 def⇐⇒ (𝑛=0 ∧ C=C′=skip ∧ s=s′ ∧ 𝜖=ok)

∨ (𝑛=1 ∧ 𝜖 ∈ ErExit ∧ ∃s′′. C, s −→ C′, s′′, 𝜖 ∧ C′, s′′⇝+
er
skip, s′)

∨ (∃𝑘,C′′, s′′. 𝑛=𝑘+1 ∧ C, s −→ C′′, s′′, ok ∧ C′′, s′′ 𝑘−→ C′, s′, 𝜖)
and C, s −→ C′, s′, 𝜖 is the UNTer small-step transitions given at the top of Fig. 6, while⇝+

er
denotes

the transitive closure of the error transitions⇝
er
as defined at the bottom of Fig. 6 (described

shortly). A FUA triple is valid, written |=F [𝑝] C [𝜖 :𝑞], iff for all s𝑞 ∈ 𝑞, there exists s𝑝 ∈ 𝑝 and 𝑛
such that C, s𝑝

𝑛−→ −, s𝑞, 𝜖 .
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The first disjunct in C, s
𝑛−→ C′, s′, 𝜖 denotes that a state is reached under ok in zero steps without

changing the underlying state, provided that C is simply skip. The last disjunct captures the
inductive case (𝑛=𝑘+1), where C takes an ok step, and s′ is subsequently reached in 𝑘 steps under 𝜖 .

Finally, the second disjunct captures the short-circuiting semantics of errors: a state s′ is reached
in one step under er when C takes an erroneous step, whereupon locally declared variables (through
local) are restored to their oldest values (outer-most scope) via⇝

er
transitions (defined in Fig. 6).

The⇝
er
transitions ‘skip over’ the execution of most commands and restore the value of a variable

𝑥 when encountering end(𝑥, 𝑣). Specifically, the⇝
er
transitions of all commands, except those of

end(𝑥, 𝑣) and sequential composition, do not change the underlying state and simply reduce to
skip (i.e. ignore their effects), while the⇝

er
transition for end(𝑥, 𝑣) restores the value of 𝑥 to 𝑣 .

The⇝
er
transitions for sequential composition are defined inductively as expected.

We next show that the BUA and FUA proof systems presented in Fig. 1 are both sound and

complete, with the full proof given in the extended version [Raad et al. 2024a, §C.1, §D.1]).

Theorem 7 (BUA and FUA soundness). For all 𝑝 , 𝑞, C and 𝜖 :

1) if ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 1, then |=B [𝑝] C [𝜖 :𝑞] holds; and
2) if ⊢F [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 1, then |=F [𝑝] C [𝜖 :𝑞] holds.

Theorem 8 (BUA and FUA completeness). For all 𝑝 , 𝑞, C and 𝜖 :

1) if |=B [𝑝] C [𝜖 :𝑞] holds, then ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 1; and

2) if |=F [𝑝] C [𝜖 :𝑞] holds, then ⊢F [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 1.

Definition 2 (Semantic divergent triples). A divergent triple is valid, written |=
[
𝑝
]
C [∞], iff for

all s ∈ 𝑝 , there exists an infinite series of C1,C2, · · · , s1, s2, · · · and 𝑛1, 𝑛2, · · · such that C, s {𝑛1

C1, s1, ok {
𝑛2 C2, s2, ok {

𝑛3 · · · , where the chain C, s {𝑛1 C1, s1, ok {
𝑛2 C2, s2, ok {

𝑛3 · · · is a
shorthand for C, s {𝑛1 C1, s1, ok ∧ C1, s1 {𝑛2 C2, s2, ok ∧ · · · , and{𝑛 is defined as follows:

C, s {𝑛 C′, s′, 𝜖
def⇐⇒ (𝑛 = 1 ∧ 𝜖 = ok ∧ C, s −→ C′, s′, 𝜖)

∨ (𝑛 = 1 ∧ 𝜖 ∈ ErExit ∧ ∃s′′. C, s −→ C′, s′′, 𝜖 ∧ C′, s′′⇝+
er
skip, s′)

∨ (∃𝑘, s′′,C′′. 𝑛=𝑘+1 ∧ C, s −→ C′′, s′′, ok ∧ C′′, s′′ {𝑘 C′, s′, 𝜖)

Note that unlike the C, s
𝑛−→ C′, s′ transitions in Def. 1 which describe terminating traces (by

reduction to skip), the C, s {𝑛 C′, s′ transitions do not stipulate termination and simply state that
executing C from s for 𝑛 steps reduces to C′ and results in s

′.
We next show that the divergence proof system presented in Fig. 2 is both sound and complete,

with the full proof given in the extended version [Raad et al. 2024a, §C.2 and §D.2].

Theorem 9 (Divergence soundness and completeness). For all 𝑝 and C, if ⊢
[
𝑝
]
C [∞] is derivable

using the rules in Fig. 2, then |=
[
𝑝
]
C [∞] holds.

For all 𝑝 and C, if |=
[
𝑝
]
C [∞] holds, then ⊢

[
𝑝
]
C [∞] is derivable using the rules in Fig. 2.

Finally, we formalise the relationship between FUA and BUA triples (see p. 8), with the proof in
the extended version [Raad et al. 2024a, §E].

Theorem 10. For all 𝑝 , C, 𝑞, 𝜖 :
1) if |=F [𝑝] C [𝜖 :𝑞] and minpre (𝑝,C, 𝑞) hold, then |=B [𝑝] C [𝜖 :𝑞] also holds; and
2) if |=B [𝑝] C [𝜖 :𝑞] and minpost (𝑝,C, 𝑞) hold, then |=F [𝑝] C [𝜖 :𝑞] also holds, where:

minpre (𝑝,C, 𝑞)
def

⇐⇒∀𝑝 ′. 𝑝 ′⊂𝑝 ⇒ ̸|=F
[
𝑝 ′
]
C [𝜖 :𝑞] minpost (𝑝,C, 𝑞)

def

⇐⇒∀𝑞′. 𝑞′⊂𝑞 ⇒ ̸|=B [𝑝]C
[
𝜖 :𝑞′

]
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AssignSL
⊢†
[
𝑥=𝑥 ′] 𝑥 :=𝑒 [ok :𝑥=𝑒 [𝑥 ′/𝑥]

] Store
⊢†
[
𝑥 ↦→𝑒

]
[𝑥] := 𝑦

[
ok :𝑥 ↦→𝑦

] StoreEr
⊢†[𝑥 ̸↦→] [𝑥] := 𝑦 [er : 𝑥 ̸↦→]

StoreNull
⊢†[𝑥=null] [𝑥] := 𝑦 [er : 𝑥=null]

Frame
⊢†[𝑝]C [𝜖 :𝑞] mod(C) ∩ fv(𝑟 )=∅

⊢†[𝑝 ∗ 𝑟 ] C [𝜖 :𝑞 ∗ 𝑟 ]

Div-Frame
⊢
[
𝑝
]
C [∞]

⊢
[
𝑝 ∗ 𝑟

]
C [∞]

Fig. 7. UNTer
sl

proof rules (excerpt), where 𝑥 and 𝑥 ′ are distinct variables and † in each rule can be

instantiated as F or B; see the extended version for the full set of UNTer
sl

rules [Raad et al. 2024a, §F].

Note that while the theoretical result in Theorem 10 does not have an immediate practical impact,
it nevertheless reconciles FUA and BUA reasoning and shows how we can use tools such as Pulse
that are underpinned by FUA to detect non-termination. Specifically, minpre describes a minimal
precondition that has not been arbitrarily weakened (grown) using the ConsF rule. Similarly,minpost

describes a minimal postcondition that has not been arbitrarily weakened using ConsB. As such,
given a set 𝑆 of FUA triples inferred by a FUA-based analysis tool such as Pulse, the triples in 𝑆 can
be soundly interpreted as BUA ones (and therefore used to prove divergence), provided that their
preconditions have not been weakened using ConsF, which is indeed the case in Pulse.

6 Extension to Separation Logic

We describe how we develop UNTersl by extending UNTer with the compositional reasoning
principles of separation logic (SL) [Ishtiaq and O’Hearn 2001]. Raad et al. [2020] have developed
incorrectness separation logic (ISL) by extending the FUA-based incorrectness logic (IL) [O’Hearn
2019] with separation logic. We adopt the model of Raad et al. [2020] and show that it is also sound
for BUA reasoning.

UNTer
sl

Programming Language and Assertions. To account for operations that access
the heap, in UNTersl we extend our programming language from §3 with the following heap-
manipulating operations (below, left) for allocation (𝑥 := alloc()), deallocation (free(𝑥)), reading
from the heap (lookup, 𝑥 := [𝑦]) and writing to the heap (mutation, [𝑥] := 𝑦). We similarly extend
the UNTer assertions as follows (below, right) by adding structural assertions to describe heaps.

Comm∋C ::= · · · | 𝑥 := alloc() | free(𝑥)
| 𝑥 := [𝑦] | [𝑥] := 𝑦

Ast ∋ 𝑝, 𝑞, 𝑟 ::= · · · | emp | 𝑒 ↦→𝑒 ′

| 𝑒 ̸↦→ | 𝑝 ∗ 𝑞

The UNTersl assertions describe sets of states, where a state comprises a (variable) store and a
heap. Existing UNTer assertions from §3 then simply describe states where the heap is empty and
the store satisfies the assertion. The structural assertions above are those of ISL [Raad et al. 2020],
which themselves are standard SL assertions [Ishtiaq and O’Hearn 2001] extended with 𝑒 ̸↦→ . The
𝑒 ̸↦→ describes states where the heap comprises a single location at 𝑒 containing the designated
value ⊥. In particular, whilst 𝑒 ↦→𝑒 ′ states that location 𝑒 is allocated (and contains value 𝑒 ′), 𝑒 ̸↦→
states that location 𝑒 is deallocated.

UNTer
sl

Proof Rules (Syntactic UNTer
sl

Triples). We present an excerpt of the UNTersl
proof rules in Fig. 7; see the extended version for the full set of rules [Raad et al. 2024a, §F]. Note
that all UNTer rules (both BUA and FUA) in Fig. 1, except Constancy and Assign, are also UNTersl
rules and are omitted from Fig. 7. In particular, we replace Constancy with the more powerful
Frame rule and give a local rule for assignment (see below). As with ISL (and in contrast to UNTer),
UNTersl triples are local in that their pre-states only contain the resources needed by the program.
For instance, as assignment requires no heap resources, as shown in AssignSL the pre-state of skip
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1. [input [0] ↦→0 ∗ size > 0 ∗ off = 𝑣 ∗ newoff = − ∗ 𝑖 = −]
2. off := 0; //AssignSL, Frame
3.

[
ok: input [0] ↦→0 ∗ size > 0 ∗ off = 0 ∗ newoff = − ∗ 𝑖 = −

]
//ConsEq

4.
[
ok: input [0] ↦→0 ∗ size > 0 ∗ off = 0 ∗ newoff = − ∗ 𝑖 = − ∗ off < size

]
5. while (off < size)

D
iv
-W

hi
le

6. [input [0] ↦→0 ∗ size > 0 ∗ off = 0 ∗ newoff = − ∗ 𝑖 = − ∗ off < size]
7. newoff := [input [off ]] // Load, Frame
8.

[
ok: input [0] ↦→0 ∗ size > 0 ∗ off = 0 ∗ newoff = 0 ∗ 𝑖 = − ∗ off < size

]
9. 𝑖 := off //AssignSL, Frame
10.

[
ok: input [0] ↦→0 ∗ size > 0 ∗ off = 0 ∗ newoff = 0 ∗ 𝑖 = 0 ∗ off < size

]
//ConsEq

11.
[
ok: input [0] ↦→0 ∗ size > 0 ∗ off = 0 ∗ newoff = 0 ∗ 𝑖 = 0 ∗ off < size ∗ ¬(𝑖 < newoff )

]
12. while (𝑖 < newoff ) {· · · ; 𝑖++} //WhileFalse
13.

[
ok: input [0] ↦→0 ∗ size > 0 ∗ off = 0 ∗ newoff = 0 ∗ 𝑖 = 0 ∗ off < size ∗ ¬(𝑖 < newoff )

]
14. off := off + newoff //AssignSL, Frame, ConsEq
15.

[
ok: input [0] ↦→0 ∗ size > 0 ∗ off = 0 ∗ newoff = 0 ∗ 𝑖 = 0 ∗ off < size

]
16. [∞]

Fig. 8. UNTer
sl

proof sketch of CVE-2023-34966 in the Samba library (see Example 11)

is simply given by the pure (non-heap) assertion 𝑥 =𝑥 ′, recording the old value of 𝑥 which can be
used in the post-state.

As in SL and ISL, the crux of UNTersl lies in the Frame rule, allowing one to extend the pre- and
post-states with disjoint resources in 𝑟 , where fv(𝑟 ) returns the set of free variables in 𝑟 , andmod(C)
returns the set of (program) variables modified by C (i.e. those on the left-hand of ‘:=’ in assignment,
lookup and allocation). These definitions are standard and elided. Heap manipulation rule are
identical to those of ISL. For instance, Store describes a successful heap mutation, while StoreEr
and StoreNull state that mutating 𝑥 causes an error when 𝑥 is deallocated or null, respectively.
The UNTersl divergent rules are those of UNTer in Fig. 2, except that the BUA UNTer triples

in the premises (e.g. the first premise of Div-Seq2) are replaced with their UNTersl counterparts.
Additionally, we extend the framing principle to divergent triples as shown in Div-Frame: if C
diverges starting from the states in 𝑝 , then it also diverges starting from the states in 𝑝 ∗ 𝑟 .

We next use UNTersl to detect a known divergence bug in the Samba library, which has already
been reported to the Common Vulnerabilities and Exposures (CVE) database as CVE-2023-34966.

Example 11 (Samba). The example in Fig. 8 is a stylised excerpt from the Samba library, where
the body of sl_unpack_loop is repeated below. The excerpt shown reads chunks of data, where
the size of each chunk is given by the corresponding entry in the input array (the size of the first
chunk is stored in input [0], the size of the second in input [1] and so forth). The off records the
offset at which next chunk to be read is stored and is initially set to zero (line 2). At each iteration
of the outer while loop (lines 5–16), the size of the next chunk is read from input into newoff

(line 7), and subsequently the offset is incremented by newoff (line 14). The inner while loop (line
12) then proceeds to read the data between off and newoff (elided here as · · · ) one unit at a time
(incrementing 𝑖 each time). Note that when 𝑖 = newoff = 0, then this inner loop is never entered.
Moreover, if newoff = 0, then the old offset is never incremented (i.e. the increment at line 14 is
idempotent), and thus the loop never terminates. This is indeed the cause of divergence in this
example, which has since been patched by simply adding a check at the beginning of the outer
loop, ensuring that newoff is non-zero and returning an error value when that is the case. Using
UNTersl we can detect this bug as shown in Fig. 8.
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Table 1. Positioning Pulse
∞
amongst (non)-termination analysis tools in the literature

Tool Term. Non-term. Non-det. Heap Auto. UA/OA Large Code
/ Libraries

Terminator [Cook et al. 2006a,b] ✓ ✗ ✓ ✗ ✓ OA ✗

Mutant [Berdine et al. 2006] ✓ ✗ ✗ ✓ ✓ OA ✗

TNT [Gupta et al. 2008] ✗ ✓ ✗ ✗ ✓ OA ✗

KEY [Velroyen and Rümmer 2008] ✗ ✓ ✗ ✗ ✓ OA ✗

CPROVER [Kroening et al. 2010] ✓ ✓ ✓ ✗ ✓ UA-OA ✗

TRex [Harris et al. 2010] ✓ ✓ ✓ ✗ ✓ UA-OA ✗

T2 [Cook et al. 2013] ✓ ✗ ✓ ✗ ✓ OA ✗

Coop-T2 [Brockschmidt et al. 2013] ✓ ✓ ✓ ✗ ✓ UA-OA ✗

Caber [Brotherston and Gorogiannis 2014] ✓ ✗ ✓ ✓ ✓ OA ✗

CPP-INV [Larraz et al. 2014] ✗ ✓ ✓ ✗ ✓ OA ✗

HipTNT [Le et al. 2014] ✓ ✓ ✓ Partial ✗ OA ✗

HipTNT+ [Le et al. 2015] ✓ ✓ ✓ Partial ✓ OA ✗

DynamiTe [Le et al. 2020] ✓ ✓ ✓ Partial ✓ OA ✗

RevTerm [Chatterjee et al. 2021] ✗ ✓ ✓ ✗ ✓ OA ✗

AProVE [Hensel et al. 2022] ✗ ✓ ✓ ✗ ✓ OA ✗

Ultimate [Heizmann et al. 2014] ✓ ✗ ✓ ✗ ✓ OA ✗

Pulse
∞ ✗ ✓ ✓ ✓ ✓ UA ✓

UNTer
sl
Semantics and Soundness. We present the UNTersl model in the extended version

[Raad et al. 2024a, §F]. The formal interpretations of BUA, FUA and divergent triples inUNTersl are
identical to theirUNTer counterparts, except that theUNTer states are replacedwith corresponding
UNTersl states to account for heaps. We show that the BUA, FUA and divergent proof system of
UNTersl are sound, with the full proof given in the extended version [Raad et al. 2024a, §G].

Theorem 12 (UNTersl soundness). The BUA, FUA and divergent proof system of UNTer
sl
are sound.

7 Evaluation

To demonstrate the feasibility of UNTersl for detecting divergence bugs, we have developed Pulse∞
as an extension of the existing Pulse program analyser (underpinned by the ISL [Raad et al. 2020]
theory and compatible with both FUA and BUA reasoning). The most fundamental extensions to
Pulse are: 1) addition of the divergent triple; 2) symbolic execution steps corresponding to proof
rules for divergence; and 3) a stopping condition corresponding to fixpoints (which is unusual for
under-approximation) and the associated “test oracle” for recognising divergence. In addition to
these fundamental changes, we needed to make some detailed but conceptually minor alterations
to the treatment of Booleans in Pulse: it had optimisations which were sound for proving violation
of safety properties, but which interfered with our oracle for divergence.

7.1 Pulse
∞
in Context

Table 1 places Pulse∞ in the context of other termination and non-termination tools within the last
two decades, where Non-det. denotes whether the tool supports non-deterministic programming
constructs such as rand(), Auto. denotes whether it is fully automated, and UA/OA denotes
whether it performs under-approximate (UA) or over-approximate (OA) analysis. To our knowledge,
Pulse

∞ is the first tool for non-termination analysis with full support for heap reasoning. Tools such
as Mutant [Berdine et al. 2006] and Caber [Brotherston and Gorogiannis 2014] are also capable of
heap reasoning using separation logic, however these tools were specifically developed to perform
over-approximate (OA) termination analysis, and do not support non-termination analysis. Other
tools such as TNT [Gupta et al. 2008] and HipTNT [Le et al. 2014, 2015] have limited support for
heap reasoning which does not include array or string capabilities.
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Most importantly, as we discuss below, to our knowledge Pulse∞ is the first tool that can au-
tomatically prove non-termination on large code bases and libraries such as OpenSSL. As we
discuss in §8, several existing tools [Brockschmidt et al. 2013; Chatterjee et al. 2021; Hensel
et al. 2022; Kroening et al. 2010; Larraz et al. 2014; Le et al. 2020; Velroyen and Rümmer 2008],
can only handle integer C programs and thus do not support programs with function calls. In
other words, unlike Pulse∞, these tools cannot be run on large C codebases or libraries such as
OpenSSL. In particular, Pulse∞ inherits all the incremental capabilities of Pulse (as documented on
https://fbinfer.com/docs/next/steps-for-ci#differential-workflow). As a point of reference, analysing
OpenSSL on 30 cores with Pulse takes 1m26s the first time. After modifying a file in the project,
re-analysing OpenSSL again in incremental mode takes only 6s.

On this point we consulted with authors of the tools referenced in the table. None responded in
the affirmative that they could run on large projects. Several tools [Le et al. 2014, 2015] stipulate
the existence of a main procedure (thus excluding libraries), while others [Heizmann et al. 2014]
require that the input to the tool be a single C file, and thus one must put the target program
and all its dependencies into a single file (thus precluding large code bases and libraries). One
theoretical possibility is to automatically construct a fake main procedure which calls methods
in a representative fashion, but this would get us into a problem similar to harness generation in
fuzzing, itself a challenging problem and a source of false positives. Our impression overall is that,
far from being a simple matter, each of the other tools is one or several research projects away
from automatic application at scale.

We evaluate Pulse∞ in two ways. First, in §7.2 we compare its ability to detect non-termination
bugs on small examples and compare it against the state-of-the-art tools. Second, in §7.3 we run
Pulse

∞ on several large projects and libraries, comprising over 1.3 million lines of code. Note that
as discussed above (and detailed later in §8), no existing automated tool for divergence analysis
can be applied to large code bases or libraries out of the box, and Pulse

∞ is the only such tool. As
such, we could not compare the Pulse∞ performance against the state of the art for analysing
libraries. We refer the reader to our project page for more detailed information about Pulse∞ and
our benchmarks for evaluating it [Raad et al. 2024a].

Experimental Setup. We ran all our experiments below on a single server equipped with an
AMD EPYC 7543P processor at 3.4 Ghz clock on 30 active cores (make -j 30) and 512GB of RAM.

7.2 Evaluating Pulse
∞
on Small Examples

SV-COMP Benchmarks. To evaluate Pulse∞ against existing tools for detecting divergence,
we focused on the state-of-the-art termination and divergence non-linear arithmetic benchmarks
extending the Competition on Software Verification (SV-COMP) initiative. DynamiTe [Le et al.
2020] outperforms all other tools listed in Table 1. Specifically, at the time of publication, Le et al.
[2020] demonstrated that DynamiTe outperformed AProVE [Hensel et al. 2022] for non-termination
analysis, and AProVE was in turn shown to outperform all other pre-existing tools in Table 1. As
such, rather than comparing Pulse

∞ against all tools listed in Table 1, we compare it directly to
DynamiTe and its non-linear arithmetic (NLA) benchmark extension distributed with SV-COMP.

We present our comparison result against DynamiTe in Table 2. The tests listed are rather small
and contain at most three loops, with the majority of them comprising a single loop. Both DynamiTe
and Pulse

∞ analyse these tests within a few seconds, with the time difference being insignificant.
As such, in Table 2 we do not compare the time-performance of the two tools, and focus instead on
their reported outcomes. As shown, Pulse∞ performs competitively against DynamiTe, though the
results are not directly comparable. Specifically, Pulse∞ successfully found divergence bugs that
were undetected by DynamiTe (e.g. the dijkstraX-both-nt tests), while it missed others found by
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Table 2. Comparing Pulse
∞
against DynamiTe on SV-COMP non-linear arithmetic (NLA) benchmarks for

termination (T) and non-termination (NT). For NT cases, ✓ denotes a true positive (i.e. the tool correctly

detected non-termination) and FN a false negative (i.e. the tool failed to detect non-termination. For T cases,

? under Pulse
∞
denotes an unknown result (Pulse

∞
proves non-termination and not termination), and FP

under DynamiTe denotes a false positive (i.e. DynamiTe incorrectly reported that the program terminates).

Test T/NT Pulse
∞ DynamiTe Test T/NT Pulse

∞ DynamiTe
bresenham1-both-nt NT FN ✓ freire1-both-nt NT ✓ FN
cohencu1-both-nt NT FN ✓ geo1-both-nt NT FN ✓

cohencu2-both-nt NT FN FN geo2-both-nt NT FN ✓

cohencu3-both-nt NT FN FN geo3-both-nt NT FN ✓

cohencu4-both-nt NT FN FN hard2-both-nt NT FN ✓

cohencu5-both-nt NT FN ✓ hard-both-nt NT ✓ ✓

dijkstra1-both-nt-2 NT FN FN hard-both-t T ? FP
dijkstra1-both-nt NT ✓ FN knuth-both-nt NT FN FN
dijkstra2-both-nt NT ✓ FN knuth-nosqrt-both-nt NT FN ✓

dijkstra3-both-nt NT ✓ FN lcm1-both-t T ? FP
dijkstra4-both-nt NT ✓ FN lcm1-both-nt NT ✓ ✓

dijkstra5-both-nt NT ✓ FN lcm2-both-nt NT ✓ ✓

dijkstra6-both-nt NT ✓ FN mannadiv-both-nt NT ✓ FN
divbin1-both-nt NT FN FN prod4br-both-nt NT FN FN
egcd2-both-nt NT ✓ ✓ prodbin-both-nt NT FN FN
egcd3-both-t T ? FP ps2-both-nt NT FN ✓

egcd3-both-nt NT ✓ ✓ ps3-both-nt NT FN FN
egcd-both-nt NT ✓ ✓ ps4-both-nt NT FN ✓

fermat1-both-t T ? FP ps5-both-nt NT FN FN
fermat1-both-nt NT FN FN ps6-both-nt NT FN FN
fermat2-both-nt NT ✓ ✓ sqrt1-both-nt NT FN ✓

fermat3-both-nt NT FN ✓ sqrt2-both-nt NT FN FN
Total Pulse

∞: 15 ✓, 25 FN, 0 FP DynamiTe: 19 ✓, 21 FN, 4 FP

DynamiTe (e.g. the geoX-both-nt tests). Notably, thanks to its under-approximate nature, Pulse∞
reported zero false positives (FP), in contrast to DynamiTe which suffered several false positives.

From this evaluation we cannot conclude that Pulse∞ has superior precision on small examples
compared to the state of the art, but neither can we conclude that it is inferior. Note that, because
Pulse

∞’s theory is sound and complete, and it directly represents the fundamental recurrence set
idea of Gupta et al. [2008] (see 8), we could in principle import any algorithmic techniques that
appear in other papers, for the purpose of establishing divergence triples. So the precision here is
an implementation rather than a fundamental matter, and the purpose of the evaluation on the
small benchmarks was just to confirm that the Pulse∞ is not too far off the state of the art, and
having done so this sets us up for the more significant evaluation on larger projects.

7.3 Running Pulse
∞
on Large Projects and Libraries

We evaluated Pulse
∞ on a number of large open source projects including OpenSSL, libxml2,

CryptoPP and libxpm. We present the result of our analysis in Table 3. As shown, each of the
libraries analysed comprises thousands of lines of code (LOC) and were each analysed within
minutes. In total, we identified and reported eleven previously unknown divergence bugs in
OpenSSL, libxml2, CryptoPP and libxpm. Several of these bugs have been acknowledged with fixes
waiting to be merged, while others are under discussion in the bug tracking system. Some of
the issues we reported in OpenSSL are instances of latent (non-manifest) errors according to the
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Table 3. Evaluating Pulse
∞
on large projects (1.3 million lines of code analysed and 11 new bugs found)

Library Language #LOC analysed Time # Bugs reported
OpenSSL C 804 K 1m, 26s 4
libxml2 C 300 K 1m, 3s 4
CryptoPP C++ 51 K 2m, 40s 2
libxpm C 11 K 2s 1
libpng C 96 K 6s 0
zlib C 41 K 1m, 7s 0
ngiflib C 1.7 K 1s 0
Total 1.3 M 14m, 5s 11

classification by Le et al. [2022]: they are only reachable when the culprit function is called with
specific parameter values. Until these latent conditions are removed, it remains up to the caller to
enforce well-behaved input to the problematic callee functions.

In the cases of CryptoPP and libxpm we have submitted pull requests with patches to be merged
in due course. We also reported our findings in libxml2 on its project bug tracking system, where
our discussion with project maintainers suggests that while the vulnerable functions are active, the
specific divergent conditional branches in them are never executed and can be safely removed.

1 void* AlignedAllocate(size_t size) {
2 + unsigned int cnt = 0;
3 byte *p;
4 while ((p = (byte *)malloc(size+16)) == NULLPTR) {
5 + if (cnt >= 10) { throw std::bad_alloc(); }
6 CallNewHandler();
7 + cnt++;
8 }
9 CRYPTOPP_ASSERT(IsAlignedOn(p, 16));
10 return p; }

Listing 2. A divergence bug found by Pulse
∞

in CryptoPP,

with our proposed fix given by adding the ‘+’-prefixed lines.

We present a bug we found in
CryptoPP (a popular cryptographic
toolkit in C++) in Listing 2. The proce-
dure shown attempts to allocate mem-
ory in a loop (lines 4–9). However, as
there is no guarantee that malloc will
succeed and return a non-null value, the
loop may not terminate. Our proposed
fix is shown at lines 2, 5 and 7 (prefixed
with ‘+’), where we record the number
of unsuccessful allocations in cnt and
throw an exception after 10 attempts.

8 Related Work

Termination and Non-Termination Tools. There are many individual reports of divergence
bugs which many readers will no doubt relate to. Notably, a recent empirical study on OSS projects
found 445 non-termination bugs from 3,142 GitHub commits [Shi et al. 2022].

There has been significant work on automatedmethods for proving termination; see the survey by
Cook et al. [2011].When a termination prover fails, the question of whether the failed proof identifies
a termination bug or if it is a false positive is more difficult than proving safety: termination bugs
cannot be generally witnessed with finite traces (assuming unbounded resources in the computation
model, that is). However, as Godefroid [2005] argues, the main value of analysis tools lies in the
discovery of bugs, not in the proof of program correctness. Thus, it is valuable to consider proving
non-termination, even without waiting for the wide deployment of termination verifiers.
The fundamental work of Gupta et al. [2008] uses proof to find divergence bugs. They use a

transition system with initial/final states and a transition relation, and they identify the notion of a
recurrence set 𝑅 as (i) a non-empty intersection with the initial set of states; and (ii) reachability of 𝑅
from every state satisfying 𝑅. Reachability in (ii) corresponds to ⊢B

[
𝑅
]
C

[
ok : 𝑅

]
. One might argue
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that the relation between the UNTer proof system for ⊢B
[
𝑝
]
C

[
ok : 𝑞

]
and the model of Gupta

et al. [2008] is analogous to the relation between Hoare’s logic and Floyd’s proof method [Apt and
Olderog 2019]: using under-approximate triples enables compositional reasoning. There are many
detailed differences beyond these. They first run a concolic executor to gather assertions at program
points, especially loop entry, but then employ an arithmetic encoding to derive reachability facts for
loop bodies, and they treat the heap concretely (as the encoding is difficult otherwise). By contrast,
we reason about reachability both of the loop stems and bodies within UNTersl, and we harness
separation logic (SL) to reason abstractly about heaps (SL-based analyses were not available at the
time of the work by Gupta et al. [2008]).

Our prototype, Pulse∞, inherits the strengths and weaknesses of Pulse. Specifically, it is easy to
run Pulse on program snippets, to scale it to large programs, and to incorporate it in a CI-based
deployment on pull requests. On the other hand, Pulse has a weak treatment of arithmetic, meaning
that some complex examples (as in the work of Gupta et al. [2008]) may not be provable. The
strengths and weaknesses of Gupta et al. [2008] are the converse. We do not believe the weaknesses
of either are inevitable; e.g. by adding a stronger arithmetic solver to Pulse

∞ it would be possible
to prove the more complex examples; the question is the effect this would have on performance.
Upon contacting Gupta et al. [2008], we were informed that their tool is no longer available; as such,
we were unable to compare Pulse∞ against it.

After Gupta et al. [2008], there have been many further papers on automatically proving/checking
termination/non-termination. Cook et al. [2015] and Chen et al. [2014] introduce novel ideas on
the use of over-approximation, going beyond the under-approximate logics here.

Many existing tools [Brockschmidt et al. 2013; Chatterjee et al. 2021; Kroening et al. 2010; Larraz
et al. 2014; Velroyen and Rümmer 2008] focus on the syntax of termination problems defined by
the Termination Competition and can only handle integer C programs, i.e. programs 1) with only
integer datatypes; and 2) without function calls. As a result, such tools cannot run on programs that
do not conform to this syntax, unless they are first pre-processed into integer C programs. In other
words, unlike Pulse∞, these tools cannot run on existing C codebases or libraries such as OpenSSL.

The T2 tool by Cook et al. [2013] can be used to prove termination (and not divergence). However,
T2 does not support heaps, and thus (unlike Pulse∞) cannot handle examples where termination
is due to e.g. pointer arithmetic. Moreover, as our direct communications with the authors have
revealed, T2 requires a C front-end, and the front-end the authors used bit-rotted’ a while ago.
The AProVE tool by Hensel et al. [2022] uses T2 as one of its back-ends for analysing termination;
however, AProVE only supports integer C programs (as discussed above). Furthermore, upon
contacting the authors about running AProVE on large libraries, we were informed that their
techniques “are quite precise and do not have sufficient abstraction methods for handling very large
programs within reasonable time”. Most significantly, however, AProVE only supports programs
that contain a main() method, and thus cannot be used to analyse libraries such as OpenSSL. This
is in contrast to Pulse∞, where we successfully analysed hundreds of thousands of lines of code
within minutes, and could effortlessly analyse libraries such as OpenSSL and libxml2. Heizmann
et al. [2014] have extended the Ultimate framework to detect divergence using Büchi automata.
However, as confirmed by the authors, a key technical limitation of their tool is that the input must
be a single C file (and thus the program being analysed and all its dependencies must be included
in one file), thus precluding its application to large projects and libraries comprising numerous
modules and dependencies spread across several files.
Brotherston and Gorogiannis [2014] present Caber for proving termination (not divergence).

While Caber supports heaps, it has only been applied to a handful of small programs, and not
large code bases or libraries. Le et al. [2014, 2015] present the HipTNT and HipTNT+ tools for
proving termination and non-termination. However, as we were informed in the course of our
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direct communication with the authors, these tools can only handle small programs such as those
in the SV-COMP benchmarks. Moreover, these tools require the user to supply certain annotations
and are thus not fully automated. Le et al. [2020] later adapted these tools to develop DynamiTe,
a dynamic termination analyser for non-linear program. However, DynamiTe can only handle
integer programs (as discussed above.)
The idea of detecting divergence using proof is appealing and intuitively not too complicated.

Although our work is but a step on the way, it is reasonable to hope that divergence proof techniques
may mature to a degree where they can be routinely deployed in engineering practice.

Under-Approximation and Incorrectness. This paper follows a line of work on under-approxi-
mate reasoning following incorrectness logic [O’Hearn 2019], but is part of a more extensive
history. O’Hearn [2019] used FUA triples to reason about incorrectness and to avoid false positives.
FUA triples were studied previously by de Vries and Koutavas [2011], but they did not make the
connection to incorrectness or absence of false positives. Further, as O’Hearn [2019] remarked, FUA
triples could be expressed in dynamic logic [Harel 1979] with a backwards diamond modality (or
forwards with a transition reversal operator). Moreover, they are similar to the must− transitions
used by e.g. [Ball et al. 2005]. As such, the FUA triple is not itself novel, but its significance has
been uncovered gradually.

Here we study both BUA and FUA triples. BUA triples were mentioned by de Vries and Koutavas
[2011] under the name “total Hoare triple”, but were not studied by them. These triples can also be
expressed immediately in dynamic logic, without resorting to backwards modalities or reversal,
and they are similar to the must+ transitions used of [Ball et al. 2005]. More recently BUA triples
were suggested by Derek Dreyer and Ralf Jung just before IL was formulated, but they remained
unexplored. (This was during a discussion with Peter O’Hearn and Jules Villard at POPL 2019 in
Lisbon, and thus BUA triples are also informally referred to as ‘Lisbon’ triples in the literature.) BUA
triples are also studied by Möller et al. [2021], but only their metatheory and not their applications.
Zilberstein et al. [2023] developed Outcome Logic (OL) where they make meta-theoretic remarks on
how BUA could serve as a foundation for incorrectness, but they do not demonstrate the practical
advantages or disadvantages of such reasoning. Specifically, while they discuss the merits of BUA
for identifying manifest errors, they do not demonstrate the practical impact of this e.g. in a scalable
analysis tool. Nor do they explore the advantage of BUA for non-termination analysis. Zilberstein
et al. [2024] later extend OL with separation logic. Ascari et al. [2024] also study BUA triples in
sufficient incorrectness logic (SIL). As with FUA, the notion of BUA is not itself novel, but its
significance is emerging gradually. This paper adds two new insights about BUA.

The first is that abducing preconditions is, in a sense, forced on us if we are to do forward reasoning
with BUA. This is because BUA triples are not closed under postconditions: given a precondition 𝑝

and a program C, there need not exist a corresponding postcondition making the triple valid. This
is the case for any 𝑝 which has a state on which C always diverges. As a result, there is no analogue
for BUA of Dijkstra’s strongest postcondition predicate transformer (where this transformer works
for FUA). This would, at first glance, make BUA appear problematic for forward reasoning: forward
reasoning in abstract interpretation uses over-approximations of Dijkstra’s transformer, reasoning
with FUA can use under-approximation of it, and this abstraction-of-post tactic is not available
for BUA. It might be possible to automate backward reasoning instead (find preconditions given
a program and a post), but there is another possibility: abduction. Given a precondition and a
program, we can try to abduce an addition ?𝐴 to the precondition to guarantee the existence of a
postcondition. For example, for ⊢B

[
𝑡𝑟𝑢𝑒∧?𝐴

]
if(even(𝑥)) diverge else 𝑥:=𝑥+1

[
ok : ?𝐵

]
, we

can abduce ?𝐴 = odd(𝑥) to give us a precondition to establish the postcondition ?𝐵 = even(𝑥).
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Abduction is used to reason forwards with BUA triples to skirt the absence of general postcon-
ditions. This is not unlike the case in classic separation logic (SL), where the absence of general
postconditions for the fault-avoiding interpretation of SL triples is circumvented by abducing safe
preconditions [Calcagno et al. 2011]. We emphasise that the point we are making here is stronger
than the mere compatibility of BUA with abduction (which has been recognised by Zilberstein
et al. [2024]): we cannot reason forward from an arbitrary preconditon, without changing it. For
comparison, consider the situation with FUA. In FUA we can do abduction, it is compatible with it,
but since FUA is closed under postconditions (there is a post for any given precondition) we could
in principle reason forwards if we so desired, without using abduction to shrink the precondition.
The second BUA insight in our work is that (unlike in other works [Ascari et al. 2024; de Vries

and Koutavas 2011; Möller et al. 2021; Zilberstein et al. 2023, 2024]) we demonstrate its suitability
for reasoning about non-termination, where pure FUA is unsound for non-termination proof rules.
This goes together with the ability of BUA triples to weaken a postcondition, which opens up the
possibility of iterating to a fixed-point as suggested in the main proof rule for diverging loops.
Thus, BUA tools can share some of the iteration strategies with their over-approximate cousins,
and in contrast to FUA-only tools. A crucial difference is that the fixpoint then implies divergence.
It is important to note that there are disadvantages to BUA-only approaches. For example,

BUA does not support shrinking a postcondition, which would block the application of partial
concretisation as in Klee, DART and similar tools (see the work of [O’Hearn 2019]). Indeed, must−
transitions, a relative of FUA triples, have been used to formalise the reasoning in such tools
[Godefroid et al. 2010]. Note that there is a more basic under-approximate triple, let us call it the
existential (EUA) triple written as ⊢E [𝑃] C [𝜖 :𝑄], stating that some state in 𝑃 reaches some state
in 𝑄 by executing C. EUA is sufficient for proving incorrectness and avoiding false positives, so
why is it not the basis of a program logic? The problem is that EUA is not closed under sequential
composition (the Seq rule fails), which makes reasoning about paths challenging. Both BUA and
FUA triples are closed under sequential composition, and this is (we presume) why they have
received more attention. But, the composition of a BUA followed by a FUA triple establishes an
EUA triple; BUA and FUA can be used together [Ball et al. 2005].

Due to the reasons discussed above, it is better for a tool, or a portion of a tool, to be compatible
with both BUA and FUA, rather than one or the other. As observed here, the Pulse framework is
compatible with both. Extension to non-termination or concretisation should take into account
considerations as above. While the BUA and FUA metatheory seems mostly settled, we do not
claim that the above remarks fully account for their strengths, weaknesses or overall significance
for reasoning: we are still learning about them.

Data Availability Statement

The proofs of all stated theorems are given in the extended version [Raad et al. 2024a]. Our
prototype tool Pulse∞ is open-source and available as an artifact online [Raad et al. 2024b].
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