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What is Automated Exploitation? 

• The ability to generate a successful computer 
attack with reduced or entirely without 
human interaction. 

• It is important to understand the hardness of 
AE to measure the risk on critical 
infrastructure and online properties. 

• There are many domains of attack: network, 
web, kernel, system, hardware, applications. 
Our focus today is on software security. 
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What are Weird Machines? 

• Weird Machine (WM): “The underlying capacity 
of a program to perform runtime computations 
that escape the program specification” 
 

(1) If extra computations are consistent with the 
intended program specification, the WM can 
lead to a covert execution of code within the 
program. 

(2) If extra computations violate the intended 
program specification, the WM can lead to a 
security exploit (what we will talk about today). 
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Today’s exploits techniques 
Modern history of exploit techniques : 
 
• Code-reuse attacks: Computations without code 

injection 
– Started with “Return into Libc” (Solar Designer’s 1997)  
– Advanced by “Return into PLT” (Rafal Wojtczuk’s 1998) 
– Generalized by Chunk reuse (“borrowing”) technique  
     (Richarte 2000, Krahmer 2005) 
– Since 2008, known as “Return Oriented Programming” 

 

• Meta-data corruption 
– “Smashing C++ VPTRs” (Eric Landuiyt, 2000) 
– “V00d00 malloc tricks” (Michel Kaempf, 2001) 
– Many, many other papers. 
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Today’s exploits techniques (2) 

• Information disclosure attacks 
– Format bugs (tf8 wu-ftpd 2.6 site-exec exploit, ~ 2000) 
– Weaknesses where content or address of target 

variables/functions can be read (BIND TSIG Exploit by LSD-
PL, Openssl-too-open exploit by Sotirov, ~ 2001) 

– “Return into printf/send” (“Bypassing PaX ASLR 
protection”, Vanegue 2002) 

• Heap chunks alignment  techniques 
– “Advanced DL malloc exploit” (JP @ core-st , 2003)  
– “Heap Feng Shui”, (Sotirov, 2007) 

• JIT attacks : make target generate “chosen” new code  
– “Pointer inference and JIT spraying” (Blazakis, 2010) 
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Exploit Mitigations 

• Data Execution Prevention (DEP/Openwall/PaX/W^X/etc) 
• Address Space Layout Randomization (ASLR) 
• Control-Flow Integrity (CFI) 
• Intra-modular displacement randomization (IDR) 
• Heap randomization (non-deterministic fitness algorithms)  
• Many others targeted protections (UDEREF, SEHOP, canary 

insertion, meta-data encoding, etc) 
 
Full AE Models: The Automated Exploitation (AE) problem is 
solved if mitigations can be bypassed using minimal to no human 
interaction.  
 
Restricted AE Models: Academic exercise where mitigations are 
ignored. Not the subject of this talk. 
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Control Flow Integrity 

• Early implementation by Determina called 
“Program Shepherding” early 2000. Formalized 
by Martin Abadi et al. in 2005. A lot of work done 
at Microsoft, Intel, and more to make it practical 
– its hard. 

• In a nutshell (idealized) : 
– Enforce strict transitions on the control flow graph, in 

particular between functions. 
– If A  B and B –ret A , then A  C is forbidden, so 

is B –ret D (for C and D any other two functions) 

• Consequence: Exploit cannot easily corrupt a 
function pointer or a return address and execute 
a ROP payload. 
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Intra-modular Displacement 
Randomization 

• [Miller, Johnson, Goel, Vanegue, 2011] at Microsoft 
Security. (http://ip.com/IPCOM/000210875) 

• Core idea: randomize address space not only using 
module base address randomization, but also within a 
module (ex: between functions). 
– Ability to change function relative address from the base 

address every time a program is executed. 

• Consequences:  
– Base address information disclosure is not enough to 

predict addresses of ALL gadgets in a module. 
– Attacker worst case: need one information disclosure per 

randomization point inserted in the module. 
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Exploit primitives 

• Two major families of exploit primitives are 
write primitives (write address space) and 
read primitives (read address space). 

• Early classification done by Gerardo Richarte 
at core-st : “About exploit writing”, 2002. 

• Modern classification done by Matt Miller: 
“Modeling the exploitation and mitigation of 
memory safety vulnerabilities”, 2012. 
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Exploit write primitive 
General form: *(basepointer + offset) = value 
 
(1) Base, offset and values are attacker-controlled 
 Write controlled value at controlled location 
 
(2) Base and offset are controlled 
 Write uncontrolled value at controlled relative location 
 With an information disclosure, can always be used to uncover new 

state space or elevate privileges 
 
(3) Only RHS Value is controlled (totally or partially) 
 Write anything at fixed location 
 Can be useful if value is: 

- Later used as base pointer, index, or offset (we fall into case 1 or 2) 
- Used in a control predicate and can uncover new “weird” state space 
- Controlling privilege level of application 
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Exploit read primitive 
General form: value = *(basepointer + offset) 
 
(1) Base, offset and values are attacker-controlled 
 Read value at desired location and store it at desired location 
 
(2) Base and offset are controlled 
 Read value at desired location, store it at uncontrolled location 
 Only useful if uncontrolled location can be read by attacker 
 
(3) Only LHS Value is controlled 
 Read internal program value and store it at desired location 
 Can be useful if value is: 

- Internal program value is a direct code or data address 
- Internal program value contains credentials (password, key, token, etc) 
- Internal program value help deduce useful address info or credentials 

12 



Rising exploit techniques 

• Data-only attacks (DOA) 
– Change internal program values to elevate privileges 

without changing Program control flow. 
– Infer address of data in program without direct 

memory read primitives. 

• Program Likelihood Inference (PLI) 
– Probabilistic attacks: discover most likely executions 

to successful exploitation in non-deterministic 
environment. 

– Timing attacks: discover internal program information 
via run time execution measurements. 

13 



 
 

Tools Armory 
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Exploit Generation 

• Automated Exploitation focuses on discovery and 
combination of write primitives and read primitives. 

• Automated Exploitation in Full Model is a very hard 
problem. Anybody telling you otherwise is a fool or an 
impostor. 

• Existing AE work focused on Restricted Models: 
– Sean Heelan’s “Automatic Generation of Control Flow 

Hijacking Exploits for Software Vulnerabilities” : 
http://www.cprover.org/dissertations/thesis-Heelan.pdf 

– David Brumley et al. (AEG, MAYHEM, etc) 

http://users.ece.cmu.edu/~dbrumley/pubs.html 
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Analysis and Exploit Automation 

• Compilers   (Program transformation) 

• Fuzz testers (Input generation) 

• SMT solvers (Symbolic reasoning) 

• Model Checkers (State space exploration) 

• Symbolic Execution Eng (Path generation) 

• Emulators (Machine modeling) 

• Abstract interpreters (Abstraction) 
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SMT solvers 

SMT = Satisfiability Modulo Theories 
 
• Give it a list of variables and constraints on them, 

will tell you whether the set of constraints is 
satisfiable. 

• A good representation to reason about a program 
(e.g. translate a program into an SMT formulae) 

• Can track feasibility of predicates, eliminate 
impossible program paths, etc. 

 
EXAMPLE 1: (B >= A) && (A <= B) is SAT 
EXAMPLE 2: A && B && NOT(A&&B) is UNSAT 
 

17 



An open-source SMT solver : Z3 

• Z3 is a state-of-the-art SMT solver developed in 
Microsoft Research RiSE group. 

• Understand equalities, arrays, bitvectors, 
uninterpreted functions, and custom theories. 

• Makes SMT a good symbolic representation to 
reason about programs (e.g. by translating it into 
SMT formulae). 

 

           Try by yourself on http://rise4fun.com/Z3/  
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F(int c) 

{ 

  int ret; 

  if (c < 10) 

     ret = 1; 

 else 

   ret = 2; 

} 

(declare-fun x () Int) 
(declare-const ret Int) 
(declare-const c Int) 
(assert (=> (>= c 10) (= ret 2)))  
(assert (=> (<  c 10) (= ret 1))) 
(assert (= ret 1)) // check me! 
(check-sat) 
(get-model) 

Example of translation from C to SMT 
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Z3 output: 
sat (model  

  (define-fun c () Int 9) 

  (define-fun ret () Int 1) ) 

Output model for constraint set 

• A model is a valuation of the variables for which a 
(SMT) formula is true. 

• In this example, the constraints set is satisfiable if 
variable C = 9 and RET = 1 

• Change the last assertion of previous slide and 
see what happens to the model. 
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HAVOC: static analysis for C/C++ 

• HAVOC: Verifier for C(++) programs 
   http://research.microsoft.com/en-us/projects/havoc/ 
• Translate C/C++ code to Boogie IR  
   (Open source at: http://boogie.codeplex.com) 
• Boogie IR is then translated to SMT formulae 

understood by Z3, which performs SMT check and give 
you a model. 

• At Microsoft, HAVOC helped found 100+ security 
vulnerabilities in Windows and Internet Explorer. 

• Experiments documented in: “Towards practical 
reactive security audit using extended static checkers” 
(Vanegue / Lahiri, 2013) 
http://research.microsoft.com/pubs/185784/paper.pdf 
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Problem: non-deterministic programs 

Heap in 90% of executions of program P : 

Heap in 10% of executions of program P : 

Chunk 1, Size S1, Addr 
A1 

Chunk 2, Size S2, 
Addr A2 = A1 + S1 

Chunk 3, Size S3,  
Addr A3 = A2 + S2 

Chunk 1, Size S1, Addr 
A1 

Chunk 3, Size S3,  
Addr A2 = A1 + S1 

Chunk 2, Size S2, 
Addr A3 = A2 + S3 

S1 =  

S2 =  

SMT solvers are unable to reason about non-determinism 

Assume an attacker can overflow chunk 1 and chunk 3 is a target: 
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Idea: Markov exploits 

• Andrei Markov (1856-1922) 

• Systems (Programs) may seem 
to act randomly, but have a 
hidden probabilistic regularity. 

• Instrument program and 
deduce from sampling which 
paths have most chance to 
bring the heap in a desired 
exploitable state. 
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Markov transition system 

S1 

S2 S3 

S4 S5 
S6 

     0.9      
0.1 

     0.6 
     0.4 

     
0.95 

     
0.05 

 
       The transition system models the set of all possible random walks. 
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Markov transition system 

Previous slide explained: 
 
• We computed the probability of reaching every heap states in a 

maximum of two heap interactions (malloc, free, etc) 
• Probability of reaching S4 is: 
     P(S4) = P(S4|S2) * P(S2|S1) = 0.6 * 0.9 = 0.54 (54%) 
• Probability of reaching S5 is: 
     P(S5) = P(S5|S2) * P(S2|S1) + P(S5|S3) * P(S3|S1) 
     = 0.9*0.4 + 0.95*0.1 = 0.455 (45.5%) 
• Probability of reaching S6 is: 
     P(S6) = P(S6|S3) * P(S3 | S1) = 0.1 * 0.05 = 0.005 (0.5%) 
  
Assuming S5 and S6 are the only two desired exploitable states,  
the most exploitable random walk ends in S5. 
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Markov Exploit Food for thoughts 

• Paths exploration strategy can be static or 
dynamic (planned, or constructed on the fly) 

• If one creates an accurate heap manager 
specification, heap state measurement could be 
static, but this is a very hard and allocator-
dependent task. 

• Most likely, one needs to execute program and 
instrument debugger to measure heap state 
when heap operations are performed. 

• After monitoring, one can construct the Markov 
transition system based on sampled program 
paths. More samples means heap model is more 
accurate. 
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Markov Exploit Food for thoughts (2) 

• Determine list of possible heap interactions (malloc, 
free, etc) sequences in a given program. A single 
unique sequence may be represented by multiple 
random walks due to non-deterministic heap manager 
behavior. 

• Determine sequence maximizing probability of 
reaching desired heap state in a minimum amount of 
steps. A SMT solver can be used to craft corresponding 
input based on encountered path predicates. 

• A range of Markov models can be used to facilitate 
encoding of heap structure into a probabilistic 
transition system (Markov chain, Markov network, etc) 
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Challenge problems 
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            Hilbert’s program  

 

 

• In 1900, German mathematician David Hilbert 
formulates a list of 23 hard problems touching 
the foundations of mathematics. Five of these 
problems remain unsolved today. 
 
http://en.wikipedia.org/wiki/Hilbert's_program 
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A Program for Automated Exploitation 

• Inspired by David Hilbert and many ones after 
him, we define a list of problems whose solutions 
pave the way for years to come in the realm of 
automated low-level software analysis. 

• The Grand Challenge consists of a set of 11 
problems in the area of vulnerability discovery 
and exploitation that vary in scope and 
applicability. 

• Most problems relate to discovering and 
combining exploit primitives to achieve elevation 
of privilege. 
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Exploit challenges are not new 

• Gerardo Richarte’s insecure programming (from 10 
years ago!) constitutes great training for manual exploit 
writing: 
 
http://community.coresecurity.com/~gera/InsecurePro
gramming/ 
 
 

• Many of the “Capture the Flag” events are, in essence, 
manual exploit challenges. 

• In this challenge, we expect exploits to be generated 
automatically instead of written manually. 
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Nature of Grand Challenge problems 

• Exploit Specification problem (A, H) 

• Input generation problems (B, C, D, E) 

• Exploit Primitive composition problem (F) 

• Environment determination (I, J, K) 

• State space representation (G) 
 
Not all problems need to be resolved for a 
given target as different problems cover 
different exploit scenarios. 
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Grand Challenge Evaluation 

Two main problems of Automated Exploitation are 
Vulnerability Discovery and Vulnerability Exploitation. 
Solutions to challenge problems must be evaluated on 
their varying degree of: 
 
• Soundness (Precision and Signal/Noise ratio) 
• Expressivity (Applicable domain and Configurability) 
• Scalability (Automation and Performance) 
• Completeness (Coverage) 
• Resilience (to Environment and Exploit Mitigations) 
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Exploit specification 

Problem A: Given a program P, determine the 
set of assertions S for which satisfying any a in S 
is equivalent to  corrupting the program. 
 
In other words,  

     what is the program P anti-specification ? 
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Problem A code 

F(int x, int y) 
{ 

    int loc[4]; 

    int idx = G(x, y); 

    if (idx > 4) 

       return -1; 

    assert(idx >= 4); // do infer assertion 
    loc[idx] = 0x00; 
} 

35 



Pre/post-conditions inference 

Problem B: Given a program function and an 
assertion in the function, determine the necessary 
and sufficient pre/post conditions such as the 
assertion is true if and only if the pre/post 
conditions is true.  
 
This is equivalent to the input generation problem 
(we start with loop-free programs). 
 
Note: May need to walk over call graph to resolve 
problem transitively from entry point to assertion. 
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Problem B code 

PRECOND (?) 
F(int x, int y) 
{ 
   int array[4]; 

   int idx = G(x + y); 

   assert(idx >= 4); 

   array[idx] = 0; 
} 

PRECOND (?) 

Int G(int x, int y) 
{ 
  if (x < y) return x; 

  else return 0; 

} 

POSTCOND (?) 
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Problem B code 

PRECOND (?) 
F(int x, int y) 
{ 
   int array[4]; 

   int idx = G(x + y); 

   assert(idx >= 4); 

   array[idx] = 0; 
} 

PRECOND (?) 

Int G(int x, int y) 
{ 
  if (x < y) return x; 

  else return 0; 

} 

POSTCOND (?) 
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Loop assertion inference 

Problem C: Given a program loop and an assertion 
A1 within or at the loop exit-node, determine loop-
assertion A2 such as A1 is true if and only if A2 is 
true. 
 
Note: A loop invariant is an assertion that must be 
verified at every iteration of the loop. Given that we 
work on a program anti-specification, the desired 
exploit loop assertion may not be necessarily a loop 
invariant (it could just be true at some iterations). 
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Problem C code 
F(char *buf, int bufsz) 
{ 
  int limit = bufsz; 
  int idx = 0; 
  loop_assertion(?) 
  while (i < limit) 
  { 
      if (buf[i] == ‘{’) limit++; 
      else if (buf[i] == ‘}’) limit--; 
      i++; 
  } 
  assert(i >= sizeof(buf)); 
  buf[i] = 0; 
} 40 



Exploit input definability 

Problem D: Given an initial state I of a program 
P with functions and loops, exhibit an algorithm 
converging to a desired sink state. 

 
A desired sink state can be defined as an 
assertion in the program (more weakly: as a set 
of chosen variables values). 
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Problem D code 

Precondition(?)                   // D = A + B + C        
F(int x, int y) 
{ 
    int loc[4]; 
    int idx = G(x, y); 
    if (idx > 4) 
       return -1; 
    while (x < y) idx++; 
    assert(idx >= 4); // how to reach this? 
    loc[idx] = 0x00; 
} 
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Exploit derivability 

Problem E: Given a concrete program input and 
associated program crash/log, find the longest 
crash trace prefix from which the desired 
exploitable program state can be reached. 
 
The available program crash/log can be: 

 

(1) Full (unlimited access to all values ever) 

(2) Partial (only active values are tracked) 

(3) Control-only (ex: a stack or instructions trace) 
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Problem E code 
/* Crash possibly generated by fuzz testing */ 
F(int x, int y) 
{ 
  int loc[4]; 
  if ((x + y) > 4)    // buggy check 
       return (loc[x]);          // program crash here 
  else if ((x + y) <= 4) {   // still buggy check 
      x = G(x, y);     
      loc[x] = 0;                 // how to reach here?  
      return (0); 
    } 
} 
Int G(int x, int y) { while (x < y) x++; return (x); } 
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Multi-interaction exploit 

Problem F: Given a program initial state I, a 
desired program state U unreachable from I 
within any single program interaction R, 
determine all intermediate states T such as 
multiple interactions Ri can be composed to 
reach U as in : R1(I,T) + R2(T,U)  
 
Transitive decomposition: determine minimum 
number of interactions to reach U from I . 
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Problem F code 

Char *glob; 
F(int x, int y)       // Ex: F and G are syscalls 
{ 
  glob = malloc(x + y);             // integer overflow 
} 
G() 
{ 
  glob[x] = 0;                            // array OOB access 
} 
 
 
How to construct Trigger() = { F(); G(); } ? 
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Minimal concurrent exploit 

Problem G: Given a program P, a desired exploit state S, and a 
thread count C, find the minimal state space representation to 
reach S in some execution of P while retaining ability to 
generate corresponding concrete input. 
 
Note 1: Partial Order Reduction is a generic framework that 
can help control state space explosion. 
 
Note 2: Minimal state space representation is dependent on 
desired sink state (as in Abstract Interpretation). 
 
Example of research in this area: “Identifying and Exploiting 
Windows Kernel Race Conditions via Memory Access 
Patterns” (Jurczyk / Coldwind, 2013) 
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Problem G code 

/* Example of basic TOC/TOU vulnerability */ 
/* ptr holds a valid non-volatile pointer */ 
F(unsigned int *ptr) 
{ 
  if (*ptr > 0x10) return; 
  global->ptr = malloc(*ptr + 1); 
  if (global->ptr == NULL) return; 
  global->ptr[*ptr] = 0x00;      // double-fetch! 
} 
 
If ptr is “modified under” by another thread, the second 
array access can go OOB. 
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Privilege Separation Inference 

Problem H: Given a program P, determine code privilege 
partitioning.  For each partition, determine entry points. 
 
(1) Determine variables guarding privilege level (PL) 

(2) Partition functions so that all elements of a given 
partition share the same PL. If static partitioning does not 
exist, determine parameters of dynamic partitioning. 
 
Partitioning can determine multi-stage exploits paths: 

• Remote  Local  Kernel 

• Remote  Sandboxed  Unsandboxed 

• Remote  Non-authenticated  Authenticated 49 



Problem H code 
bool authenticated = false; 
Int F() 
{ 
   authenticated = check_creds(); 
   // execute at authenticated level  
   if (authenticated)  
   { 
      bool res = serve_client();    
      if (!res) return (send_error(E_FUNC)); 
      return (0); 
   } 
  // execute at non-authenticated level 
  return (send_error(E_AUTH));     
} 
Note: send_error() can execute at multiple privilege levels.  50 



Heap likelihood inference 

Problem I: Given a program P using a non-deterministic 
heap allocator, determine most exploitable random walk(s) 
for P to reach “aligned” exploitable heap state. 
 

(1) Assume existence of heap corruption C in P 

(2) Identify set S of exploitable heap states w.r.t. C 

(3) Minimize steps to reach any element of S 
 
 

See previous Markov exploit description. This problem is 
particularly relevant in presence of heap randomization. 

 

 
51 



Problem I code 
Struct s1 { int *ptr; } *p1a = NULL, *p1b = NULL, *p1c = NULL; 
Struct s2 { int authenticated; } *p2 = NULL; 
 
F() { 
  p1a = (struct s1*) calloc(sizeof(struct s1), 1);  
  p1b = (struct s1*) calloc(sizeof(struct s1), 1); 
  p1c = (struct s1*) calloc(sizeof(struct s1), 1); 
} 
G() { p2 = (struct s2*) calloc(sizeof(struct s2), 1); } 
H() { free(p1b); } 
I() { memset(p1a, 0x01, 32); } 
J() { if (p2 && p2->authenticated) puts(“you win”); }   // Print this  
K() { if (p1a && p1a->ptr) *(p1a->ptr) = 0x42; }            // Avoid crash here 
 
Iff allocator reuses p1b’s memory to allocate p2 with max probability:  
Automate best walk = { F(); H(); G(); I(); J(); }  
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Generalized program timing attack 

Problem J: Define the necessary and sufficient execution 
time analysis conditions to infer value, size, or location of: 
 

(1) A program control structure 
– Return address, Function Pointer, Exception Handler, etc.  

(2) A program data structure 
– Heap chunk, Stack Frame, Global variable, etc.  

(3) A program code fragment 
– Instruction, Function, Method, etc. 

 

In other words, automate program time inference to defeat 
address space randomization. 
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Problem J examples 

The problem is stated in very generic terms on purpose.  
 
Resolution depends on target-specific implementation.  
 
For two great starting point on timing inference, see: 
 
Cryptographic timing attacks on DH, RSA, DSS and other systems 
(Paul C. Kocher, 1996) 
http://www.cryptography.com/public/pdf/TimingAttacks.pdf 
 
Program timing attacks on Firefox hash tables  
(Paul @pa_kt, 2012)  
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-
timing-attacks-on-hashtables-part-1/ 
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Indirect information disclosures 

Problem K: Define the necessary and sufficient 
conditions to infer the value or address of a 
variable without a direct read primitive, such as: 
 
(1) Data reuse attacks 
(example: partial pointer overrides) 
 
(2) Pointer value prediction attacks 
(example: pointer inference) 
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Problem K examples 

Resolution of Problem K depends on target-specific 
implementation.  
 
Prior art on Indirect information disclosures includes: 
 
Flash Pointer Inference (Blazakis, 2010) 
http://www.semantiscope.com/research/BHDC2010/BHD
C-2010-Paper.pdf 
 
Garbage Collection marking attack (Blazakis, 2013) 
http://www.trapbit.com/talks/Summerc0n2013-
GCWoah.pdf 
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Conclusion 

• We decomposed the problem of Automated 
Exploit Generation in a set of challenges with 
clear intermediate assumptions. 

• Resolving one such sub-problem is a step towards 
automated end-to-end solutions of larger and 
larger sub-classes of exploits. 

• Even though Automated Exploitation is an 
undecidable problem,  observing that most 
vulnerabilities are shallow allows the problem to 
be approached. 
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Questions / Discussion 

• Thanks for attending H2HC’s 10th anniversary 

 

 

 

 

 

• Questions and feedback welcomed by email 
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