
The Automated Exploitation
Grand Challenge

Tales of Weird Machines

Julien Vanegue

julien.vanegue@gmail.com

H2HC conference, Sao Paulo, Brazil

October 2013

mailto:julien.vanegue@gmail.com

Acknowledgements

I am indebted to many people for their work on Program Analysis and
Exploitation:

Julio Auto, Thomas Ball, Dion Blazakis, Pascal Bouchareine, Sergey Bratus, Nicolas
Brito, Michal Chmielewski, Gynvael Coldwind, Solar Designer, Mark Dowd, Thomas
Dullien, Sergiusz Fonrobert, Mathieu Garcia, Thomas Garnier, Travis Goodspeed,
Patrice Godefroid, Sean Heelan, Ronald Huizer, Vincenzo Iozzo, Barnaby Jack
(R.I.P.), JP, Ken Johnson, Mateusz Jurczyk, Michel ‘MaXX’ Kaempf, Tim Kornau,
Kostya Kortchinsky, Sebastian Krahmer, Joshua Lackey, Shuvendu Lahiri, Eric
Landuiyt, Xavier Leroy, Felix ‘FX’ Lindner, Tarjei Mandt, Damien Millescamps, Matt
Miller, John McDonalds, David Molnar, Julien Palardy, Enrico Perla, Paul @pa_kt,
The PaX Team, Willem Pinckaers, Rolf Rolles, Gerardo Richarte, Dan Rosenberg,
Sebastien Roy, Fermin Serna, Scut, Sysk, Alex Sotirov, Julien Tinnes, Richard Van
Eeden, Ralf-Phillipp Weinmann, David Weston, Rafal Wojtczuk, Michael Zalewski.

 You are an inspiration for the Automated Exploitation Grand Challenge

 Thank you

2

What is Automated Exploitation?

• The ability to generate a successful computer
attack with reduced or entirely without
human interaction.

• It is important to understand the hardness of
AE to measure the risk on critical
infrastructure and online properties.

• There are many domains of attack: network,
web, kernel, system, hardware, applications.
Our focus today is on software security.

3

What are Weird Machines?

• Weird Machine (WM): “The underlying capacity
of a program to perform runtime computations
that escape the program specification”

(1) If extra computations are consistent with the
intended program specification, the WM can
lead to a covert execution of code within the
program.

(2) If extra computations violate the intended
program specification, the WM can lead to a
security exploit (what we will talk about today).

 4

Today’s exploits techniques
Modern history of exploit techniques :

• Code-reuse attacks: Computations without code

injection
– Started with “Return into Libc” (Solar Designer’s 1997)
– Advanced by “Return into PLT” (Rafal Wojtczuk’s 1998)
– Generalized by Chunk reuse (“borrowing”) technique
 (Richarte 2000, Krahmer 2005)
– Since 2008, known as “Return Oriented Programming”

• Meta-data corruption
– “Smashing C++ VPTRs” (Eric Landuiyt, 2000)
– “V00d00 malloc tricks” (Michel Kaempf, 2001)
– Many, many other papers.

5

Today’s exploits techniques (2)

• Information disclosure attacks
– Format bugs (tf8 wu-ftpd 2.6 site-exec exploit, ~ 2000)
– Weaknesses where content or address of target

variables/functions can be read (BIND TSIG Exploit by LSD-
PL, Openssl-too-open exploit by Sotirov, ~ 2001)

– “Return into printf/send” (“Bypassing PaX ASLR
protection”, Vanegue 2002)

• Heap chunks alignment techniques
– “Advanced DL malloc exploit” (JP @ core-st , 2003)
– “Heap Feng Shui”, (Sotirov, 2007)

• JIT attacks : make target generate “chosen” new code
– “Pointer inference and JIT spraying” (Blazakis, 2010)

 6

Exploit Mitigations

• Data Execution Prevention (DEP/Openwall/PaX/W^X/etc)
• Address Space Layout Randomization (ASLR)
• Control-Flow Integrity (CFI)
• Intra-modular displacement randomization (IDR)
• Heap randomization (non-deterministic fitness algorithms)
• Many others targeted protections (UDEREF, SEHOP, canary

insertion, meta-data encoding, etc)

Full AE Models: The Automated Exploitation (AE) problem is
solved if mitigations can be bypassed using minimal to no human
interaction.

Restricted AE Models: Academic exercise where mitigations are
ignored. Not the subject of this talk.

7

Control Flow Integrity

• Early implementation by Determina called
“Program Shepherding” early 2000. Formalized
by Martin Abadi et al. in 2005. A lot of work done
at Microsoft, Intel, and more to make it practical
– its hard.

• In a nutshell (idealized) :
– Enforce strict transitions on the control flow graph, in

particular between functions.
– If A  B and B –ret A , then A  C is forbidden, so

is B –ret D (for C and D any other two functions)

• Consequence: Exploit cannot easily corrupt a
function pointer or a return address and execute
a ROP payload.

8

Intra-modular Displacement
Randomization

• [Miller, Johnson, Goel, Vanegue, 2011] at Microsoft
Security. (http://ip.com/IPCOM/000210875)

• Core idea: randomize address space not only using
module base address randomization, but also within a
module (ex: between functions).
– Ability to change function relative address from the base

address every time a program is executed.

• Consequences:
– Base address information disclosure is not enough to

predict addresses of ALL gadgets in a module.
– Attacker worst case: need one information disclosure per

randomization point inserted in the module.

9

http://ip.com/IPCOM/000210875
http://ip.com/IPCOM/000210875

Exploit primitives

• Two major families of exploit primitives are
write primitives (write address space) and
read primitives (read address space).

• Early classification done by Gerardo Richarte
at core-st : “About exploit writing”, 2002.

• Modern classification done by Matt Miller:
“Modeling the exploitation and mitigation of
memory safety vulnerabilities”, 2012.

10

Exploit write primitive
General form: *(basepointer + offset) = value

(1) Base, offset and values are attacker-controlled
 Write controlled value at controlled location

(2) Base and offset are controlled
 Write uncontrolled value at controlled relative location
 With an information disclosure, can always be used to uncover new

state space or elevate privileges

(3) Only RHS Value is controlled (totally or partially)
 Write anything at fixed location
 Can be useful if value is:

- Later used as base pointer, index, or offset (we fall into case 1 or 2)
- Used in a control predicate and can uncover new “weird” state space
- Controlling privilege level of application

11

Exploit read primitive
General form: value = *(basepointer + offset)

(1) Base, offset and values are attacker-controlled
 Read value at desired location and store it at desired location

(2) Base and offset are controlled
 Read value at desired location, store it at uncontrolled location
 Only useful if uncontrolled location can be read by attacker

(3) Only LHS Value is controlled
 Read internal program value and store it at desired location
 Can be useful if value is:

- Internal program value is a direct code or data address
- Internal program value contains credentials (password, key, token, etc)
- Internal program value help deduce useful address info or credentials

12

Rising exploit techniques

• Data-only attacks (DOA)
– Change internal program values to elevate privileges

without changing Program control flow.
– Infer address of data in program without direct

memory read primitives.

• Program Likelihood Inference (PLI)
– Probabilistic attacks: discover most likely executions

to successful exploitation in non-deterministic
environment.

– Timing attacks: discover internal program information
via run time execution measurements.

13

Tools Armory

14

Exploit Generation

• Automated Exploitation focuses on discovery and
combination of write primitives and read primitives.

• Automated Exploitation in Full Model is a very hard
problem. Anybody telling you otherwise is a fool or an
impostor.

• Existing AE work focused on Restricted Models:
– Sean Heelan’s “Automatic Generation of Control Flow

Hijacking Exploits for Software Vulnerabilities” :
http://www.cprover.org/dissertations/thesis-Heelan.pdf

– David Brumley et al. (AEG, MAYHEM, etc)

http://users.ece.cmu.edu/~dbrumley/pubs.html

15

http://www.cprover.org/dissertations/thesis-Heelan.pdf
http://www.cprover.org/dissertations/thesis-Heelan.pdf
http://www.cprover.org/dissertations/thesis-Heelan.pdf
http://users.ece.cmu.edu/~dbrumley/pubs.html

Analysis and Exploit Automation

• Compilers (Program transformation)

• Fuzz testers (Input generation)

• SMT solvers (Symbolic reasoning)

• Model Checkers (State space exploration)

• Symbolic Execution Eng (Path generation)

• Emulators (Machine modeling)

• Abstract interpreters (Abstraction)

16

SMT solvers

SMT = Satisfiability Modulo Theories

• Give it a list of variables and constraints on them,

will tell you whether the set of constraints is
satisfiable.

• A good representation to reason about a program
(e.g. translate a program into an SMT formulae)

• Can track feasibility of predicates, eliminate
impossible program paths, etc.

EXAMPLE 1: (B >= A) && (A <= B) is SAT
EXAMPLE 2: A && B && NOT(A&&B) is UNSAT

17

An open-source SMT solver : Z3

• Z3 is a state-of-the-art SMT solver developed in
Microsoft Research RiSE group.

• Understand equalities, arrays, bitvectors,
uninterpreted functions, and custom theories.

• Makes SMT a good symbolic representation to
reason about programs (e.g. by translating it into
SMT formulae).

 Try by yourself on http://rise4fun.com/Z3/

18

F(int c)

{

 int ret;

 if (c < 10)

 ret = 1;

 else

 ret = 2;

}

(declare-fun x () Int)
(declare-const ret Int)
(declare-const c Int)
(assert (=> (>= c 10) (= ret 2)))
(assert (=> (< c 10) (= ret 1)))
(assert (= ret 1)) // check me!
(check-sat)
(get-model)

Example of translation from C to SMT

19

Z3 output:
sat (model

 (define-fun c () Int 9)

 (define-fun ret () Int 1))

Output model for constraint set

• A model is a valuation of the variables for which a
(SMT) formula is true.

• In this example, the constraints set is satisfiable if
variable C = 9 and RET = 1

• Change the last assertion of previous slide and
see what happens to the model.

20

HAVOC: static analysis for C/C++

• HAVOC: Verifier for C(++) programs
 http://research.microsoft.com/en-us/projects/havoc/
• Translate C/C++ code to Boogie IR
 (Open source at: http://boogie.codeplex.com)
• Boogie IR is then translated to SMT formulae

understood by Z3, which performs SMT check and give
you a model.

• At Microsoft, HAVOC helped found 100+ security
vulnerabilities in Windows and Internet Explorer.

• Experiments documented in: “Towards practical
reactive security audit using extended static checkers”
(Vanegue / Lahiri, 2013)
http://research.microsoft.com/pubs/185784/paper.pdf
 21

http://research.microsoft.com/en-us/projects/havoc/
http://research.microsoft.com/en-us/projects/havoc/
http://research.microsoft.com/en-us/projects/havoc/
http://boogie.codeplex.com/
http://research.microsoft.com/pubs/185784/paper.pdf
http://research.microsoft.com/pubs/185784/paper.pdf

Problem: non-deterministic programs

Heap in 90% of executions of program P :

Heap in 10% of executions of program P :

Chunk 1, Size S1, Addr
A1

Chunk 2, Size S2,
Addr A2 = A1 + S1

Chunk 3, Size S3,
Addr A3 = A2 + S2

Chunk 1, Size S1, Addr
A1

Chunk 3, Size S3,
Addr A2 = A1 + S1

Chunk 2, Size S2,
Addr A3 = A2 + S3

S1 =

S2 =

SMT solvers are unable to reason about non-determinism

Assume an attacker can overflow chunk 1 and chunk 3 is a target:

22

Idea: Markov exploits

• Andrei Markov (1856-1922)

• Systems (Programs) may seem
to act randomly, but have a
hidden probabilistic regularity.

• Instrument program and
deduce from sampling which
paths have most chance to
bring the heap in a desired
exploitable state.

23

Markov transition system

S1

S2 S3

S4 S5
S6

 0.9
0.1

 0.6
 0.4

0.95

0.05

 The transition system models the set of all possible random walks.

24

Markov transition system

Previous slide explained:

• We computed the probability of reaching every heap states in a

maximum of two heap interactions (malloc, free, etc)
• Probability of reaching S4 is:
 P(S4) = P(S4|S2) * P(S2|S1) = 0.6 * 0.9 = 0.54 (54%)
• Probability of reaching S5 is:
 P(S5) = P(S5|S2) * P(S2|S1) + P(S5|S3) * P(S3|S1)
 = 0.9*0.4 + 0.95*0.1 = 0.455 (45.5%)
• Probability of reaching S6 is:
 P(S6) = P(S6|S3) * P(S3 | S1) = 0.1 * 0.05 = 0.005 (0.5%)

Assuming S5 and S6 are the only two desired exploitable states,
the most exploitable random walk ends in S5.

25

Markov Exploit Food for thoughts

• Paths exploration strategy can be static or
dynamic (planned, or constructed on the fly)

• If one creates an accurate heap manager
specification, heap state measurement could be
static, but this is a very hard and allocator-
dependent task.

• Most likely, one needs to execute program and
instrument debugger to measure heap state
when heap operations are performed.

• After monitoring, one can construct the Markov
transition system based on sampled program
paths. More samples means heap model is more
accurate.

26

Markov Exploit Food for thoughts (2)

• Determine list of possible heap interactions (malloc,
free, etc) sequences in a given program. A single
unique sequence may be represented by multiple
random walks due to non-deterministic heap manager
behavior.

• Determine sequence maximizing probability of
reaching desired heap state in a minimum amount of
steps. A SMT solver can be used to craft corresponding
input based on encountered path predicates.

• A range of Markov models can be used to facilitate
encoding of heap structure into a probabilistic
transition system (Markov chain, Markov network, etc)

27

Challenge problems

28

 Hilbert’s program

• In 1900, German mathematician David Hilbert
formulates a list of 23 hard problems touching
the foundations of mathematics. Five of these
problems remain unsolved today.

http://en.wikipedia.org/wiki/Hilbert's_program

29

http://en.wikipedia.org/wiki/Hilbert's_program

A Program for Automated Exploitation

• Inspired by David Hilbert and many ones after
him, we define a list of problems whose solutions
pave the way for years to come in the realm of
automated low-level software analysis.

• The Grand Challenge consists of a set of 11
problems in the area of vulnerability discovery
and exploitation that vary in scope and
applicability.

• Most problems relate to discovering and
combining exploit primitives to achieve elevation
of privilege.

30

Exploit challenges are not new

• Gerardo Richarte’s insecure programming (from 10
years ago!) constitutes great training for manual exploit
writing:

http://community.coresecurity.com/~gera/InsecurePro
gramming/

• Many of the “Capture the Flag” events are, in essence,
manual exploit challenges.

• In this challenge, we expect exploits to be generated
automatically instead of written manually.

31

http://community.coresecurity.com/~gera/InsecureProgramming/
http://community.coresecurity.com/~gera/InsecureProgramming/
http://community.coresecurity.com/~gera/InsecureProgramming/

Nature of Grand Challenge problems

• Exploit Specification problem (A, H)

• Input generation problems (B, C, D, E)

• Exploit Primitive composition problem (F)

• Environment determination (I, J, K)

• State space representation (G)

Not all problems need to be resolved for a
given target as different problems cover
different exploit scenarios.

32

Grand Challenge Evaluation

Two main problems of Automated Exploitation are
Vulnerability Discovery and Vulnerability Exploitation.
Solutions to challenge problems must be evaluated on
their varying degree of:

• Soundness (Precision and Signal/Noise ratio)
• Expressivity (Applicable domain and Configurability)
• Scalability (Automation and Performance)
• Completeness (Coverage)
• Resilience (to Environment and Exploit Mitigations)

33

Exploit specification

Problem A: Given a program P, determine the
set of assertions S for which satisfying any a in S
is equivalent to corrupting the program.

In other words,

 what is the program P anti-specification ?

34

Problem A code

F(int x, int y)
{

 int loc[4];

 int idx = G(x, y);

 if (idx > 4)

 return -1;

 assert(idx >= 4); // do infer assertion
 loc[idx] = 0x00;
}

35

Pre/post-conditions inference

Problem B: Given a program function and an
assertion in the function, determine the necessary
and sufficient pre/post conditions such as the
assertion is true if and only if the pre/post
conditions is true.

This is equivalent to the input generation problem
(we start with loop-free programs).

Note: May need to walk over call graph to resolve
problem transitively from entry point to assertion.

36

Problem B code

PRECOND (?)
F(int x, int y)
{
 int array[4];

 int idx = G(x + y);

 assert(idx >= 4);

 array[idx] = 0;
}

PRECOND (?)

Int G(int x, int y)
{
 if (x < y) return x;

 else return 0;

}

POSTCOND (?)

37

Problem B code

PRECOND (?)
F(int x, int y)
{
 int array[4];

 int idx = G(x + y);

 assert(idx >= 4);

 array[idx] = 0;
}

PRECOND (?)

Int G(int x, int y)
{
 if (x < y) return x;

 else return 0;

}

POSTCOND (?)

38

Loop assertion inference

Problem C: Given a program loop and an assertion
A1 within or at the loop exit-node, determine loop-
assertion A2 such as A1 is true if and only if A2 is
true.

Note: A loop invariant is an assertion that must be
verified at every iteration of the loop. Given that we
work on a program anti-specification, the desired
exploit loop assertion may not be necessarily a loop
invariant (it could just be true at some iterations).

39

Problem C code
F(char *buf, int bufsz)
{
 int limit = bufsz;
 int idx = 0;
 loop_assertion(?)
 while (i < limit)
 {
 if (buf[i] == ‘{’) limit++;
 else if (buf[i] == ‘}’) limit--;
 i++;
 }
 assert(i >= sizeof(buf));
 buf[i] = 0;
} 40

Exploit input definability

Problem D: Given an initial state I of a program
P with functions and loops, exhibit an algorithm
converging to a desired sink state.

A desired sink state can be defined as an
assertion in the program (more weakly: as a set
of chosen variables values).

41

Problem D code

Precondition(?) // D = A + B + C
F(int x, int y)
{
 int loc[4];
 int idx = G(x, y);
 if (idx > 4)
 return -1;
 while (x < y) idx++;
 assert(idx >= 4); // how to reach this?
 loc[idx] = 0x00;
}

42

Exploit derivability

Problem E: Given a concrete program input and
associated program crash/log, find the longest
crash trace prefix from which the desired
exploitable program state can be reached.

The available program crash/log can be:

(1) Full (unlimited access to all values ever)

(2) Partial (only active values are tracked)

(3) Control-only (ex: a stack or instructions trace)
43

Problem E code
/* Crash possibly generated by fuzz testing */
F(int x, int y)
{
 int loc[4];
 if ((x + y) > 4) // buggy check
 return (loc[x]); // program crash here
 else if ((x + y) <= 4) { // still buggy check
 x = G(x, y);
 loc[x] = 0; // how to reach here?
 return (0);
 }
}
Int G(int x, int y) { while (x < y) x++; return (x); }
 44

Multi-interaction exploit

Problem F: Given a program initial state I, a
desired program state U unreachable from I
within any single program interaction R,
determine all intermediate states T such as
multiple interactions Ri can be composed to
reach U as in : R1(I,T) + R2(T,U)

Transitive decomposition: determine minimum
number of interactions to reach U from I .

45

Problem F code

Char *glob;
F(int x, int y) // Ex: F and G are syscalls
{
 glob = malloc(x + y); // integer overflow
}
G()
{
 glob[x] = 0; // array OOB access
}

How to construct Trigger() = { F(); G(); } ?

46

Minimal concurrent exploit

Problem G: Given a program P, a desired exploit state S, and a
thread count C, find the minimal state space representation to
reach S in some execution of P while retaining ability to
generate corresponding concrete input.

Note 1: Partial Order Reduction is a generic framework that
can help control state space explosion.

Note 2: Minimal state space representation is dependent on
desired sink state (as in Abstract Interpretation).

Example of research in this area: “Identifying and Exploiting
Windows Kernel Race Conditions via Memory Access
Patterns” (Jurczyk / Coldwind, 2013)

47

Problem G code

/* Example of basic TOC/TOU vulnerability */
/* ptr holds a valid non-volatile pointer */
F(unsigned int *ptr)
{
 if (*ptr > 0x10) return;
 global->ptr = malloc(*ptr + 1);
 if (global->ptr == NULL) return;
 global->ptr[*ptr] = 0x00; // double-fetch!
}

If ptr is “modified under” by another thread, the second
array access can go OOB.

48

Privilege Separation Inference

Problem H: Given a program P, determine code privilege
partitioning. For each partition, determine entry points.

(1) Determine variables guarding privilege level (PL)

(2) Partition functions so that all elements of a given
partition share the same PL. If static partitioning does not
exist, determine parameters of dynamic partitioning.

Partitioning can determine multi-stage exploits paths:

• Remote  Local  Kernel

• Remote  Sandboxed  Unsandboxed

• Remote  Non-authenticated  Authenticated 49

Problem H code
bool authenticated = false;
Int F()
{
 authenticated = check_creds();
 // execute at authenticated level
 if (authenticated)
 {
 bool res = serve_client();
 if (!res) return (send_error(E_FUNC));
 return (0);
 }
 // execute at non-authenticated level
 return (send_error(E_AUTH));
}
Note: send_error() can execute at multiple privilege levels. 50

Heap likelihood inference

Problem I: Given a program P using a non-deterministic
heap allocator, determine most exploitable random walk(s)
for P to reach “aligned” exploitable heap state.

(1) Assume existence of heap corruption C in P

(2) Identify set S of exploitable heap states w.r.t. C

(3) Minimize steps to reach any element of S

See previous Markov exploit description. This problem is
particularly relevant in presence of heap randomization.

51

Problem I code
Struct s1 { int *ptr; } *p1a = NULL, *p1b = NULL, *p1c = NULL;
Struct s2 { int authenticated; } *p2 = NULL;

F() {
 p1a = (struct s1*) calloc(sizeof(struct s1), 1);
 p1b = (struct s1*) calloc(sizeof(struct s1), 1);
 p1c = (struct s1*) calloc(sizeof(struct s1), 1);
}
G() { p2 = (struct s2*) calloc(sizeof(struct s2), 1); }
H() { free(p1b); }
I() { memset(p1a, 0x01, 32); }
J() { if (p2 && p2->authenticated) puts(“you win”); } // Print this
K() { if (p1a && p1a->ptr) *(p1a->ptr) = 0x42; } // Avoid crash here

Iff allocator reuses p1b’s memory to allocate p2 with max probability:
Automate best walk = { F(); H(); G(); I(); J(); }

52

Generalized program timing attack

Problem J: Define the necessary and sufficient execution
time analysis conditions to infer value, size, or location of:

(1) A program control structure
– Return address, Function Pointer, Exception Handler, etc.

(2) A program data structure
– Heap chunk, Stack Frame, Global variable, etc.

(3) A program code fragment
– Instruction, Function, Method, etc.

In other words, automate program time inference to defeat
address space randomization.

53

Problem J examples

The problem is stated in very generic terms on purpose.

Resolution depends on target-specific implementation.

For two great starting point on timing inference, see:

Cryptographic timing attacks on DH, RSA, DSS and other systems
(Paul C. Kocher, 1996)
http://www.cryptography.com/public/pdf/TimingAttacks.pdf

Program timing attacks on Firefox hash tables
(Paul @pa_kt, 2012)
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-
timing-attacks-on-hashtables-part-1/

54

http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/

Indirect information disclosures

Problem K: Define the necessary and sufficient
conditions to infer the value or address of a
variable without a direct read primitive, such as:

(1) Data reuse attacks
(example: partial pointer overrides)

(2) Pointer value prediction attacks
(example: pointer inference)

55

Problem K examples

Resolution of Problem K depends on target-specific
implementation.

Prior art on Indirect information disclosures includes:

Flash Pointer Inference (Blazakis, 2010)
http://www.semantiscope.com/research/BHDC2010/BHD
C-2010-Paper.pdf

Garbage Collection marking attack (Blazakis, 2013)
http://www.trapbit.com/talks/Summerc0n2013-
GCWoah.pdf

56

http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://www.trapbit.com/talks/Summerc0n2013-GCWoah.pdf
http://www.trapbit.com/talks/Summerc0n2013-GCWoah.pdf
http://www.trapbit.com/talks/Summerc0n2013-GCWoah.pdf
http://www.trapbit.com/talks/Summerc0n2013-GCWoah.pdf

Conclusion

• We decomposed the problem of Automated
Exploit Generation in a set of challenges with
clear intermediate assumptions.

• Resolving one such sub-problem is a step towards
automated end-to-end solutions of larger and
larger sub-classes of exploits.

• Even though Automated Exploitation is an
undecidable problem, observing that most
vulnerabilities are shallow allows the problem to
be approached.

57

Questions / Discussion

• Thanks for attending H2HC’s 10th anniversary

• Questions and feedback welcomed by email

58

