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Abstract
There is a large body of work on concurrent reasoning including Rely-Guarantee (RG) and Concurrent
Separation Logics. These theories are over-approximate: a proof identifies a superset of program
behaviours and thus implies the absence of certain bugs. However, failure to find a proof does
not imply their presence (leading to false positives in over-approximate tools). We describe a
general theory of under-approximate reasoning for concurrency. Our theory incorporates ideas from
Concurrent Incorrectness Separation Logic and RG based on a subset rather than a superset of
interleavings. A strong motivation of our work is detecting software exploits; we do this by developing
concurrent adversarial separation logic (CASL), and use CASL to detect information disclosure
attacks that uncover sensitive data (e.g. passwords) and out-of-bounds attacks that corrupt data. We
also illustrate our approach with classic concurrency idioms that go beyond prior under-approximate
theories which we believe can inform the design of future concurrent bug detection tools.
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1 Introduction

Incorrectness Logic (IL) [17] presents a formal foundation for proving the presence of bugs
using under-approximation, i.e. focusing on a subset of behaviours to ensure one detects
only true positives (real bugs) rather than false positives (spurious bug reports). This is in
contrast to verification frameworks proving the absence of bugs using over-approximation,
where a superset of behaviours is considered. The key advantage of under-approximation
is that tools underpinned by it are accompanied by a no-false-positives (NFP) theorem for
free, ensuring all bugs reported are real bugs. This has culminated in a successful trend in
automated static analysis tools that use under-approximation for bug detection, e.g. RacerD
[3] for data race detection in Java programs, the work of Brotherston et al. [4] for deadlock
detection, and Pulse-X [14] which uses the under-approximate theory of ISL (incorrectness
separation logic, an IL extension) [18] for detecting memory safety bugs such as use-after-free
errors. All three tools are currently industrially deployed and are state-of-the art techniques:
RacerD significantly outperforms other race detectors in terms of bugs found and fixed, while
Pulse-X has a higher fix-rate than the industrial Infer tool [8] used widely at Meta, Amazon
and Microsoft. IL and ISL, though, only support bug detection in sequential programs.
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25:2 A General Approach to Under-approximate Reasoning about Concurrent Programs

We present concurrent adversarial separation logic (CASL, pronounced ‘castle’), a general,
under-approximate framework for detecting concurrency bugs and exploits, including a
hitherto unsupported class of bugs. Inspired by adversarial logic [22], we model a vulnerable
program Cv and its attacker (adversarial) Ca as the concurrent program Ca || Cv, and use
the compositional principles of CASL to detect vulnerabilities in Cv. CASL is a parametric
framework that can be instantiated for a range of bugs/exploits. CASL combines under-
approximation with ideas from RGSep [20] and concurrent separation logic (CSL) [16] – we
chose RGSep rather than rely-guarantee [12] for compositionality (see p. 7). However, CASL
does not merely replace over- with under-approximation in RGSep/CSL: CASL includes an
additional component witnessing (under-approximating) the interleavings leading to bugs.

CASL builds on concurrent incorrectness separation logic (CISL) [19]. However, while
CISL was designed to capture the reasoning in cutting-edge tools such as RacerD, CASL
explicitly goes beyond these tools. Put differently, CISL aspired to be a specialised theory of
concurrent under-approximation, oriented to existing tools (and inheriting their limitations),
whereas CASL aspires to be more general. In particular, in our private communication
with CISL authors they have confirmed two key limitations of CISL. First, CISL can detect
certain bugs compositionally only by encoding buggy executions as normal ones. While this
is sufficient for bugs where encountering a bug does not force the program to terminate (e.g.
data races), it cannot handle bugs with short-circuiting semantics, e.g. null pointer exceptions,
where the execution is halted on encountering the bug (see §2 for details). Second and
more significantly, CISL cannot compositionally detect a large class of bugs, data-dependent
bugs, where a bug occurs only under certain interleavings and concurrent threads affect the
control flow of one another. To see this, consider the program P ≜ x := 1 || a := x; if (a) error,
where the left thread, τ1, writes 1 to x, the right thread, τ2, reads the value of x in a and
subsequently errors if a̸=0. That is, the error occurs only in interleavings where τ1 is executed
before τ2, and the two threads synchronise on the value of x; i.e. τ1 affects the control flow
of τ2 and the error occurrence is dependent on the data exchange between the threads.

Such data-dependency is rather prevalent as threads often synchronise via data exchange.
Moreover, a large number of security-breaking software exploits are data-dependent bugs.
An exploit (or attack) is code that takes advantage of a bug in a vulnerable program to cause
unintended or erroneous behaviours. Vulnerabilities are bugs that lead to critical security
compromises (e.g. leaking secrets or elevating privileges). Distinguishing vulnerabilities
from benign bugs is a growing problem; understanding the exploitability of bugs is a
time-consuming process requiring expert involvement, and large software vendors rely on
automated exploitability analysis to prioritise vulnerability fixing among a sheer number
of bugs. Rectifying vulnerabilities in the field requires expensive software mitigations (e.g.
addressing Meltdown [15]) and/or large-scale recalls. It is thus increasingly important to
detect vulnerabilities pre-emptively during development to avoid costly patches and breaches.

To our knowledge, CASL is the first under-approximate theory that can detect all
categories of concurrency bugs (including data-dependent ones) compositionally (by reasoning
about each thread in isolation). CASL is strictly stronger than CISL and supports all CISL
reasoning principles. Moreover, CASL is the first under-approximate and compositional
theory for exploit detection. We instantiate CASL to detect information disclosure attacks
that uncover sensitive data (e.g. Heartbleed [9]) and out-of-bounds attacks that corrupt data
(e.g. zero allocation [21]). Thanks to CASL soundness, each CASL instance is automatically
accompanied by an NFP theorem: all bugs/exploits identified by it are true positives.

Contributions and Outline. Our contributions (detailed in §2) are as follows. We present
CASL (§3) and prove it sound, with the full proof given in the accompanying technical
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appendix [?]. We instantiate CASL to detect information disclosure attacks on stacks (§4)
and heaps (§C in [?]) and memory safety attacks (§D in [?]). We also develop an under-
approximate analogue of RG that is simpler but less expressive than CASL (§E and §F in
[?]). We discuss related work in §5.

2 Overview

CISL and Its Limitations. CISL [19] is an under-approximate logic for detecting bugs in
concurrent programs with a built-in no-false-positives theorem ensuring all bugs detected
are true bugs. Specifically, CISL allows one to prove triples of the form [p] C [ϵ :q], stating
that every state in q is reachable by executing C starting in some state in p, under the (exit)
condition ϵ that may be either ok for normal (non-erroneous) executions, or ϵ ∈ ErExit
for erroneous executions, where ErExit contains erroneous conditions. The CISL authors
identify global bugs as those that are due to the interaction between two or more concurrent
threads and arise only under certain interleavings. To see this, consider the examples below
[19], where we write τ1 and τ2 for the left and right threads in each example, respectively:

l: free(x) l′: free(x) (DataAgn) free(x);
[z] := 1;

a := 0; a := [z];
if (a=1) l: [x] := 1 (DataDep)

In an interleaving of DataAgn in which τ1 is executed after (resp. before) τ2, a double-free
bug is reached at l (resp. l′). Analogously, in a DataDep interleaving where τ2 is executed
after τ1, value 1 is read from z in a, the condition of if is met and thus we reach a use-after-free
bug at l. Raad et al. [19] categorise global bugs as either data-agnostic or data-dependent,
denoting whether concurrent threads contributing to a global bug may affect the control
flow of one another. For instance, the bug at l in DataDep is data-dependent as τ1 may
affect the control flow of τ2: the value read in a := [z], and subsequently the condition of if
and whether l: [x] := 1 is executed depend on whether τ2 executes a := [z] before or after τ1
executes [z] := 1. By contrast, the threads in DataAgn cannot affect the control flow of one
another; hence the bugs at l and l′ are data-agnostic.

CISL-Par[
P1

]
C1

[
ok :Q1

] [
P2

]
C2

[
ok :Q2

][
P1 ∗ P2

]
C1 || C2

[
ok : Q1 ∗ Q2

]In certain cases, CISL can detect data-agnostic bugs
compositionally (i.e. by analysing each thread in isola-
tion) by encoding buggy executions as normal (ok) ones
and then using the CISL-Par rule shown across. In particular, when the targeted bugs
do not manifest short-circuiting (where bug encounter halts execution, e.g. a null-pointer
exception), then buggy executions can be encoded as normal ones and subsequently detected
compositionally using CISL-Par. For instance, when a data-agnostic data race is encountered,
execution is not halted (though program behaviour may be undefined), and thus data races
can be encoded as normal executions and detected by CISL-Par. By contrast, in the case
of data-agnostic errors such as null-pointer exceptions, the execution is halted (i.e. short-
circuited) and thus can no longer be encoded as normal executions that terminate. As such,
CISL cannot detect data-agnostic bugs with short-circuiting semantics compositionally.

More significantly, however, CISL is altogether unable to detect data-dependent bugs
compositionally. Consider the data-dependent use-after-free bug at l in DataDep. As
discussed, this bug occurs when τ2 is executed after τ1 is fully executed (i.e. 1 is written to z

and x is deallocated). That is, for τ2 to read 1 for z it must somehow infer that τ1 writes 1
to z; this is not possible without having knowledge of the environment. This is reminiscent
of rely-guarantee (RG) reasoning [12], where the environment behaviour is abstracted as a
relation describing how it may manipulate the state. As RG only supports global and not
compositional reasoning about states, RGSep [20] was developed by combining RG with
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25:4 A General Approach to Under-approximate Reasoning about Concurrent Programs

dom(G1) = {α1, α2} dom(G2) = {α′
1, α′

2} R1 ≜ G2 R2 ≜ G1 θ ≜ [α1, α2, α′
1, α′

2]
G1(α1)≜(x Z⇒ lx∗ lx 7→vx, ok, x Z⇒ lx∗ lx ̸7→) G2(α′

1)≜(z Z⇒ lz ∗ lz 7→1, ok, z Z⇒ lz ∗ lz 7→1)
G1(α2)≜(z Z⇒ lz ∗ lz 7→vz, ok, z Z⇒ lz ∗ lz 7→1) G2(α′

2)≜(x Z⇒ lx∗ lx ̸7→ , er , x Z⇒ lx∗ lx ̸7→)

∅, G1 ∪ G2, {[ ]} ⊢
[
a Z⇒va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
// Par

R1, G1,

{[ ]} ⊢
[

x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
1. free(x); // Atom, MS-Free

{[α1]} ⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→vz

]
2. [z] := 1; // Atom, MS-Write

{[α1, α2]} ⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→1

]
3. // EnvR

{[α1, α2, α′
1]}⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→1

]
4. // EnvR

{θ} ⊢
[
er : x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]

R2, G2,
{[ ]} ⊢

[
a Z⇒va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
5. // EnvL

{[α1]} ⊢
[
ok: a Z⇒va ∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→vz

]
6. // EnvL

{[α1,α2]}⊢
[
ok: a Z⇒va∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
7. a := 0; // AtomLocal, MS-AssignVal

{[α1,α2]}⊢
[
ok: a Z⇒0∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
8. a := [z]; // Atom, MS-Read

{[α1,α2,α′
1]}⊢

[
ok: a Z⇒1∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒lz ∗ lz 7→1

]
9. if (a = 1) [x] := 1 // Atom, MS-WriteUAF

{θ} ⊢
[
er : a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
∅, G1 ∪ G2, {θ} ⊢

[
er : a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
Figure 1 CASL proof of DataDep; the // denote CASL rules applied at each step. The R1, G1

and R2, G2 are not repeated at each step as they are unchanged.

separation logic to support state compositionality. We thus develop CASL as an under-
approximate analogue of RGSep for bug catching (see p. 7 for a discussion on RGSep/RG).

2.1 CASL for Compositional Bug Detection

In CASL we prove under-approximate triples of the form R, G, Θ ⊢ [P ] C [ϵ :Q], stating that
every post-world wq ∈Q is reached by running C on some pre-world wp ∈P , with R, G and
Θ described shortly. Each CASL world w is a pair (l, g), where l∈State is the local state
not accessible by the environment, while g ∈ State is the shared (global) state accessible
by all threads. We define CASL in a general, parametric way that can be instantiated for
different use cases. As such, the choice of the underlying states, State, is a parameter to be
instantiated accordingly. For instance, in what follows we instantiate CASL to detect the
use-after-free bug in DataDep, where we define states as State ≜ Stack × Heap (see §3),
i.e. each state comprises a variable store and a heap.

For better readability, we use P, Q, R as meta-variable for sets of worlds and p, q, r for
sets of states. We write p ∗ q for sets of worlds (l, g) where the local state is given by p

(l∈p) and the shared state is given by q (g ∈q). Given P and Q describing e.g. the worlds
of two different threads, the composition P ∗ Q is defined component-wise on the local and
shared states. More concretely, as local states are thread-private, they are combined via
the composition operator ∗ on states in State (also supplied as a CASL parameter). On
the other hand, as shared states are globally visible to all threads, the views of different
threads of the shared state must agree and thus shared states are combined via conjunction
(∧). That is, given P ≜ p ∗ p′ and Q ≜ q ∗ q′ , then P ∗ Q ≜ p ∗ q ∗ p′∧ q′ .

The rely relation, R, describes how the environment threads may access/update the
shared state, while the guarantee relation, G, describes how the threads in C may do so.
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Specifically, both R and G are maps of actions: given G(α)≜(p, ϵ, q), the α denotes an action
identifier and (p, ϵ, q) denotes its effect, where p, q are sets of shared states and ϵ is an exit
condition. Lastly, Θ denotes a set of traces (interleavings), such that each trace θ∈Θ is a
sequence of actions taken by the threads in C or the environment, i.e. the actions in dom(G)
and dom(R). In particular, R, G, Θ ⊢ [P ] C [ϵ :Q] states that for all traces θ∈Θ, each world
in Q is reachable by executing C on some world in P culminating in θ, where the effects of
the threads in C (resp. in the environment of C) on the shared state are given by G and R,
respectively. We shortly elaborate on this through an example.

CASL for Detecting Data-Dependent Bugs. Although CASL can detect all bugs
identified by Raad et al. [19], we focus on using CASL for data-dependent bugs as they
cannot be handled by the state-of-the-art CISL framework. In Fig. 1 we present a CASL
proof sketch of the bug in DataDep. Let us write τ1 and τ2 for the left and right threads
in Fig. 1, respectively. Variables x and z are accessed by both threads and are thus shared,
whereas a is accessed by τ2 only and is local. Similarly, heap locations lx and lz (recorded
in x and z) are shared as they are accessed by both threads. This is denoted by P2 ≜
a Z⇒ va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz in the pre-condition of τ2 in Fig. 1, describing
worlds in which the local state is a Z⇒ va (stating that stack variable a records value va),
and the global state is x Z⇒ lx ∗ lx 7→ vx ∗ z Z⇒ lz ∗ lz 7→ vz – note that we use the Z⇒ and 7→
arrows for stack and heap resources, respectively. By contrast, the τ1 precondition is P1 ≜
x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz , comprising only shared resources and no local resources.

The actions in G1 (resp. G2), defined at the top of Fig. 1, describe the effect of τ1 (resp. τ2)
on the shared state. For instance, G1(α1) describes executing free(x) by τ1: when the shared
state contains x Z⇒ lx ∗ lx 7→vx, i.e. a sub-part of the shared state satisfies x Z⇒ lx ∗ lx 7→vx, then
free(x) terminates normally (ok) and deallocates x, updating this sub-part to x Z⇒ lx ∗ lx ̸7→,
denoting that lx is deallocated. Dually, the actions in R1 (resp. R2) describe the effect of
the threads in the environment of τ1 (resp. τ2); e.g. as the environment of τ1 comprises τ2
only and G2 describes the effect of τ2 on the shared state, we have R1≜G2.

Let us first consider analysing τ2 in isolation, ignoring the // annotations for now (these
become clear once we present the CASL proof rules in §3). Recall that in order to detect
the use-after-free bug at l, thread τ2 must account for an interleaving in which τ1 executes
both its instructions before τ2 proceeds with its execution. That is, τ2 may assume that
τ1 executes the actions associated with α1 and α2, as defined in R2. Note that after each
environment action (in R2) we extend the trace to record the associated action (we elaborate
on why this is needed below): starting from the empty trace [], we subsequently update it to
[α1] and [α1, α2] to record the environment actions assumed to have executed. Thread τ2
then executes the (local) assignment instruction a := 0 (line 7) which accesses its local state
(a Z⇒va) only. Subsequently, it proceeds to execute its instructions by accessing/updating
the shared state as prescribed in G2: it 1) takes action α′

1 associated with executing a := [z],
whereby it reads from the heap location pointed to by z (i.e. lz) and stores it in a; and
then 2) takes action α′

2 associated with executing [x] := 1, where it attempts to write to
location lx pointed to by x and arrives at a use-after-free error as lx is deallocated, yielding
Q2 ≜ a Z⇒ 1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 . Note that after each G2 action α the trace is
extended with α, culminating in trace θ (defined at the top of Fig. 1). That is, each time a
thread accesses the shared state it must do so through an action in its guarantee and record
it in its trace. By contrast, when the instruction effect is limited to its local state (e.g. line 7
of τ2), it may be executed freely, without consulting the guarantee or recording an action.

We next analyse τ1 in isolation: τ1 executes its two instructions as given by α1 and α2 in
G1, updating the trace to [α1, α2]. It then assumes that τ2 in its environment executes its
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25:6 A General Approach to Under-approximate Reasoning about Concurrent Programs

actions (in R1), resulting in θ and yielding Q1 ≜ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 . Note that
τ1 may assume that the environment action α′

2 executes erroneously, as described in R1(α′
2).

Finally, we reason about the full program using the CASL parallel composition rule, Par (in
Fig. 3), stating that if we prove R1, G1, Θ1 ⊢ [P1] C1 [ϵ :Q1] and separately R2, G2, Θ2 ⊢ [P2]
C2 [ϵ :Q2], then we can prove R1 ∩ R2, G1 ∪ G2, Θ1 ∩ Θ2 ⊢ [P1 ∗ P2] C1 || C2 [ϵ :Q1 ∗ Q2] for
the concurrent program C1 || C2. In other words, (1) the pre-condition (resp. post-conditions)
of C1 || C2 is given by composing the pre-conditions (resp. post-conditions) of its constituent
threads, namely P1 ∗ P2 (resp. Q1 ∗ Q2); (2) the effect of C1 || C2 on the shared state is the
union of their respective effect (i.e. G1 ∪ G2); (3) the effect of the C1 || C2 environment on the
shared state is the effect of the threads in the environment of both C1 and C2 (i.e. R1 ∩ R2);
and (4) the traces generated by C1 || C2 are those generated by both C1 and C2 (i.e. Θ1 ∩ Θ2).

Returning to Fig. 1, we use Par to reason about the full program. Let C1 and C2 denote
the programs in the left and right threads, respectively. (1) Starting from P ≜ a Z⇒ va∗
x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz , we split P as P1 ∗ P2 (i.e. P = P1 ∗ P2) and pass P1 (resp.
P2) to τ1 (resp. τ2). (2) We analyse C1 and C2 in isolation and derive R1, G1, {θ}⊢ [P1] C1
[er :Q1] and R2, G2, {θ} ⊢ [P2] C2 [er :Q2]. (3) We use Par to combine the two triples and
derive ∅, G1 ∪ G2, {θ}⊢ [P ] C1 || C2 [er : Q] with Q ≜ a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 .

CISL versus CASL. In contrast to CISL-Par where we can only derive normal (ok) triples
(and thus inevitably must encode erroneous behaviours as normal ones if possible), the CASL
Par rule makes no such stipulation (ϵ=ok or ϵ∈ErExit) and allows deriving both normal
and erroneous triples. More significantly, a CISL triple [P ] C [ϵ :Q] executed by a thread τ

only allows τ to take actions (updating the state) by executing C, i.e. only allows actions
executed by τ itself and not those of other threads in the environment (executing another
program C′). This is also the case for all correctness triples in over-approximate settings,
e.g. RGSep and RG. By contrast, CASL triples additionally allow τ to take a particular
action by an environment thread, as specified by rely, thereby allowing one to consider a
specific interleaving (see the EnvL, EnvR and EnvEr rules in Fig. 3). This ability to assume
a specific execution by the environment is missing from CISL. This is a crucial insight for
data-dependent bugs that depend on certain data exchange/synchronisation between threads.

Recording Traces. Note that when taking a thread action (e.g. at line 1 in Fig. 1), the
executing thread τ must adhere to the behaviour in its guarantee and additionally witness
the action taken by executing corresponding instructions; this is captured by the CASL Atom
rule. That is, the guarantee denotes what τ can do, and provides no assurance that τ does
carry out those actions. This assurance is witnessed by executing corresponding instructions,
e.g. τ1 in Fig. 1 must execute free(x) on line 1 when taking α1. By contrast, when τ takes
an environment action (e.g. at line 3 in Fig. 1), it simply assumes the environment will
take this action without witnessing it. That is, when reasoning about τ in isolation we
assume a particular interleaving and show a given world is reachable under that interleaving.
Therefore, the correctness of the compositional reasoning is contingent on the environment
fulfilling this assumption by adhering to the same interleaving. This is indeed why we record
θ, i.e. to ensure all threads assume the same sequence of actions on the shared state. As
mentioned above, R, G specify how the shared state is manipulated, and have no bearing on
thread-local states. As such, we record no trace actions for instructions that only manipulate
the local state (e.g. line 7 in Fig. 1); this is captured by the CASL AtomLocal rule.

Note that the Θ component of CASL is absent in its over-approximate counterpart RGSep.
This is because in the correctness setting of RGSep one must prove a program is correct for
all interleavings and it is not needed to record the interleavings considered. By contrast, in
the incorrectness setting of CASL our aim is to show the occurrence of a bug under certain
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interleavings and thus we record them to ensure their feasibility: if a thread assumes a given
interleaving θ, we must ensure that θ is a feasible interleaving for all concurrent threads.

RGSep versus RG. We develop CASL as an under-approximate analogue of RGSep [20]
rather than RG [12]. We initially developed CASL as an under-approximate analogue of RG;
however, the lack of support for local reasoning led to rather verbose proofs. Specifically, as
discussed above and as we show in §4, the CASL AtomLocal rule allows local reasoning on
thread-local resources without accounting for them in the recorded traces. By contrast, in
RG there is no thread-local state and the entire state is shared (accessible by all threads).
Hence, were we to base CASL on RG, we could only support the Atom rule and not the local
AtomLocal variant, and thus every single action by each thread would have to be recorded
in the trace. This not only leads to verbose proofs (with long traces), but it is also somewhat
counter-intuitive. Specifically, thread-local computations (e.g. on thread-local registers) have
no bearing on the behaviour of other threads and need not be reflected in the global trace.
We present our original RG-based development in §E for the interested reader.

2.2 CASL for Compositional Exploit Detection
In practice, software attacks attempt to escalate privileges (e.g. Log4j) or steal credentials (e.g.
Heartbleed [9]) using an adversarial program written by a security expert. That is, attackers
typically use an adversarial program to interact with a codebase and exploit its vulnerabilities.
Therefore, we can model a vulnerable program Cv and its adversary (attacker) Ca as the
concurrent program Ca || Cv, and use CASL to detect vulnerabilities in Cv. Vulnerabilities
often fall into the data-dependent category, where the vulnerable program Cv receives an
input from the adversary Ca, and that input determines the next steps in the execution
of Cv, i.e. Ca affects the control flow of Cv. Hence, existing under-approximate techniques
such as CISL cannot detect such exploits, while the compositional techniques of CASL for
detecting data-dependent bugs is ideally-suited for them. Indeed, to our knowledge CASL is
the first formal, under-approximate theory that enables exploit detection. Thanks to the
compositional nature of CASL, the approaches described here can be used to build scalable
tools for exploit detection, as we discuss below. Moreover, by virtue of its under-approximate
nature and built-in no-false-positives theorem, exploits detected by CASL are certified in
that they are guaranteed to reveal true vulnerabilities.

In what follows we present an example of an information disclosure attack. Later we show
how we use CASL to detect several classes of exploits, including: 1) information disclosure
attacks on stacks (§4) and 2) heaps (§C in the technical appendix [?]) to uncover sensitive
data, e.g. Heartbleed [9]; and 3) memory safety attacks (§D in [?]), e.g. zero allocation [21].

Hereafter, we write Ca and Cv for the adversarial and vulnerable programs, respectively;
and write τa and τv for the threads running Ca and Cv, respectively. We represent exploits
as Ca || Cv, positioning Ca and Cv as the left and right threads, respectively. As we discuss
below, we model communication between τa and τv over a shared channel c, where each party
can transmit (send/receive) information over c using the send and recv instructions.

send(c, 8);
recv(c, y);

local sec := ∗;
local w[8] :={0};
recv(c, x);
if (x ≤ 8)

z := w[x];
send(c, z);

(InfDis)

Information Disclosure Attacks. Consider the InfDis
example on the right, where τv (the vulnerable thread)
allocates two variables on the stack: sec, denoting a secret
initialised with a non-deterministic value (∗), and array
w of size 8 initialised to 0. As per stack allocation, sec
and w are allocated contiguously from the top of the stack.
That is, when the top of the stack is denoted by top, then
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sec occupies the first unitof the stack (at top) and w occupies the next 8 units (between
top−1 and top−8). In other words, w starts at top−8 and thus w[i] resides at top−8+i.

The τv then receives x from τa, retrieves the xth entry in w and sends it to τa over c.
Specifically, τv first checks that x is valid (within bounds) via x ≤ 8. However, as arrays
are indexed from 0, for x to be valid we must have x < 8 instead, and thus this check is
insufficient. That is, when τa sends 8 over c (send(c, 8)), then τv receives 8 on c and stores it
in x (recv(c, x)), i.e. x=8, resulting in an out-of-bounds access (z := w[x]). As such, since
w[i] resides at top−8+i, x=8 and sec is at top, accessing w[x] inadvertently retrieves the
secret value sec, stores it in z, which is subsequently sent to τa over c, disclosing sec to τa!
CASL for Scalable Exploit Detection. In the over-approximate setting proving correct-
ness (absence of bugs), a key challenge of developing scalable analysis tools lies in the need
to consider all possible interleavings and establish bug freedom for all interleavings. In the
under-approximate setting proving incorrectness (presence of bugs), this task is somewhat
easier: it suffices to find some buggy interleaving. Nonetheless, in the absence of heuristics
guiding the search for buggy interleavings, one must examine each interleaving to find buggy
ones. Therefore, in the worst case one may have to consider all interleavings.

When using CASL to detect data-dependent bugs, the problem of identifying buggy
interleavings amounts to determining when to account for environment actions. For instance,
detecting the bug in Fig. 1 relied on accounting for the actions of the left thread at lines 5
and 6 prior to reading from z. Therefore, the scalability of a CASL-based bug detection tool
hinges on developing heuristics that determine when to apply environment actions.

In the general case, where all threads may access any and all shared data (e.g. in DataDep),
developing such heuristics may require sophisticated analysis of the synchronisation patterns
used. However, in the case of exploits (e.g. in InfDis), the adversary and the vulnerable
programs operate on mostly separate states, with the shared state comprising a shared
channel (c) only, accessed through send and recv. In other words, the program syntax (send
and recv instructions) provides a simple heuristic prescribing when the environment takes an
action. Specifically, the computation carried out by τv is mostly local and does not affect
the shared state c (i.e. by instructions other than send/recv); as discussed, such local steps
need not be reflected in the trace and τa need not account for them. Moreover, when τv
encounters a recv(c, −) instruction, it must first assume the environment (τa) takes an action
and sends a message over c to be subsequently received by τv. This leads to a simple heuristic:
take an environment action prior to executing recv. We believe this observation can pave
the way towards scalable exploit detection, underpinned by CASL and benefiting from its
no-false-positives guarantee, certifying that the exploits detected are true positives.

3 CASL: A General Framework for Bug Detection

We present the general theory of the CASL framework for detecting concurrency bugs. We
develop CASL in a parametric fashion, in that CASL may be instantiated for detecting
bugs and exploits in a multitude of contexts. CASL is instantiated by supplying it with the
specified parameters; the soundness of the instantiated CASL reasoning is then guaranteed
for free from the soundness of the framework (see Theorem 2). We present the CASL
ingredients as well as the parameters it is to be supplied with upon instantiation.
CASL Programming Language. The CASL language is parametrised by a set of atoms,
Atom, ranged over by a. For instance, our CASL instance for detecting memory safety
bugs (§D) includes atoms for accessing the heap. This allows us to instantiate CASL for
different scenarios without changing its underlying meta-theory. Our language is given
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α∈AId R, G ∈AMap ≜ AId ⇀ P(State) × Exit × P(State) Θ∈P(Trace)
θ ∈ Trace ≜ List⟨AId⟩ Θ0 ≜ {[ ]} Θ1 ++ Θ2 ≜

{
θ1 ++ θ2 θ1 ∈ Θ1 ∧ θ2 ∈ Θ2

}
α :: Θ ≜

{
α :: θ θ ∈ Θ

}
dsj(R, G) def⇐⇒ dom(R)∩dom(G)=∅

R1 ⊆R2
def⇐⇒ dom(R1)⊆dom(R2) ∧ ∀α∈dom(R1).R1(α)=R2(α)

R′ ≼θ R def⇐⇒ ∀α ∈ θ ∩ dom(R′). R′(α) = R(α) R′ ≼Θ R def⇐⇒ ∀θ ∈ Θ. R′ ≼θ R

wf(R, G) def⇐⇒ dsj(R, G) ∧ ∀α∈dom(R), p, q, l.R(α)=(p, −, q) ∧ q ∗ {l} ̸= ∅ ⇒ p ∗ {l} ̸= ∅

Figure 2 The CASL model definitions

by the C grammar below, and includes atoms (a), skip, sequential composition (C1; C2),
non-deterministic choice (C1 + C2), loops (C⋆) and parallel composition (C1 || C2).

Comm ∋ C ::= a | skip | C1; C2 | C1 + C2 | C⋆ | C1 || C2

CASL States and Worlds. Reasoning frameworks [13, 19] typically reason at the level
of high-level states, equipped with additional instrumentation to support diverse reasoning
principles. In the frameworks based on separation logic, high-level states are modelled
by a partial commutative monoid (PCM) of the form (State, ◦, State0), where State
denotes the set of states; ◦ : State × State ⇀ State denotes the partial, commutative and
associative state composition function; and State0 ⊆ State denotes the set of unit states.
Two states l1, l2 ∈ State are compatible, written l1 # l2, if their composition is defined:
l1 # l2

def⇐⇒ ∃l. l=l1 ◦ l2. Once CASL is instantiated with the desired state PCM, we define
the notion of worlds, World, comprising pairs of states of the form (l, g), where l ∈ State is
the local state accessible only by the current thread(s), and g ∈ State is the shared (global)
state accessible by all threads (including those in the environment), provided that (l, g) is
well-formed. A pair (l, g) is well-formed if the local and shared states are compatible (l # g).
▶ Definition 1 (Worlds). Assume a PCM for states, (State, ◦, State0). The set of worlds
is World≜

{
(l, g)∈State × State l# g

}
. World composition, • : World × World ⇀

World, is defined component-wise, • ≜ (◦, ◦=), where g ◦= g′ ≜ g when g =g′, and is other-
wise undefined. The world unit set is World0≜

{
(l0, g)∈World l0 ∈State0 ∧ g ∈State

}
.

Notation. We use p, q, r as metavariables for state sets (in P(State)), and P, Q, R as
metavariables for world sets (in P(World)). We write P ∗ Q for

{
w • w′ w∈P ∧ w′∈Q

}
;

P ∧ Q for P ∩ Q; P ∨ Q for P ∪ Q; false for ∅; and true for P(World). We write p ∗ q for{
(l, g)∈World l∈ p∧ g ∈q

}
. When clear from the context, we lift p, q, r to sets of worlds

with arbitrary shared states; e.g. p denotes a set of worlds (l, g), where l∈p and g ∈State.
Error Conditions and Atomic Axioms. CASL uses under-approximate triples [17, 18, 19]
of the form R, G, Θ ⊢ [p] C [ϵ :q], where ϵ ∈ Exit≜{ok} ⊎ ErExit denotes an exit condition,
indicating normal (ok) or erroneous execution (ϵ∈ErExit). Erroneous conditions in ErExit
are reasoning-specific and are supplied as a parameter, e.g. npe for a null pointer exception.

We shortly define the under-approximate proof system of CASL. As atoms are a CASL
parameter, the CASL proof system is accordingly parametrised by their set of under-
approximate axioms, Axiom ⊆ P(State) × Atom × Exit × P(State), describing how they
may update states. Concretely, an atomic axiom is a tuple (p, a, ϵ, q), where p, q ∈P(State),
a∈Atom and ϵ∈Exit. As we describe shortly, atomic axioms are then lifted to CASL proof
rules (see Atom and AtomLocal), describing how atomic commands may modify worlds.
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CASL Triples. A CASL triple R, G, Θ ⊢ [P ] C [ϵ :Q] states that every world in Q can be
reached under ϵ for every witness trace θ∈Θ by executing C on some world in P . Moreover,
at each step the actions of the current thread (executing C) and its environment adhere to G
and R, respectively. The R, G are defined as action maps in Fig. 2, mapping each action
α∈AId to a triple describing its behaviour. Compared to original rely/guarantee relations
[20, 12], in CASL we record two additional components: 1) the exit condition (ϵ) indicating
a normal or erroneous step; and 2) the action id (α) to identify actions uniquely. The latter
allows us to construct a witness interleaving θ∈Trace as a list of actions (see Fig. 2). As
discussed in §2, to avoid false positives, if we detect a bug assuming the environment takes
action α, we must indeed witness the environment taking α. That is, if we detect a bug
assuming the environment takes α but the environment cannot do so, then the bug is a false
positive. Recording traces ensures each thread fulfils its assumptions, as we describe shortly.

Intuitively, each α corresponds to executing an atom that updates a sub-part of the shared
state. Specifically, G(α)=(p, ϵ, q) (resp. R(α)=(p, ϵ, q)) denotes that the current thread
(resp. an environment thread) may take α and update a shared sub-state in p to one in q

under ϵ, and in doing so it extends each trace in Θ with α. Moreover, the current thread
may take α with G(α)=(p, ϵ, q) only if it executes an atom a with behaviour (p, ϵ, q), i.e.
(p, a, ϵ, q)∈Axiom, thereby witnessing α. By contrast, this is not required for an environment
action. As we describe below, this is because each thread witnesses the G actions it takes,
and thus when combining threads (using the CASL Par rule described below), so long as
they agree on the interleavings (traces) taken, then the actions recorded have been witnessed.

Lastly, we require R, G to be well-formed (wf(R, G) in Fig. 2), stipulating that: 1) R
and G be disjoint, dsj(R, G); and 2) the actions in R be frame-preserving: for all α with
R(α) = (p, −, q) and all states l, if l is compatible with q (i.e. q ∗ {l} ≠ ∅), then l is also
compatible with p (i.e. p ∗ {l} ≠ ∅). Condition (1) allows us to attribute actions uniquely to
threads (i.e. distinguish between R and G actions). Condition (2) is necessary for the CASL
Frame rule (see below), ensuring that applying an environment action does not inadvertently
update the state in such a way that invalidates the resources in the frame. Note that we
require no such condition on G actions. This is because as discussed, each G action taken is
witnessed by executing an atom axiomatised in Axiom; axioms in Axiom must in turn be
frame-preserving to ensure the soundness of CASL. That is, a G action is taken only if it is
witnessed by an atom which is frame-preserving by definition (see SoundAtoms in §A).

CASL Proof Rules. We present the CASL proof rules in Fig. 3, where we assume the
rely/guarantee relations in triple contexts are well-formed. Skip states that executing skip
leaves the worlds (P ) unchanged and takes no actions, yielding a single empty trace Θ0 ≜ {[ ]}.
Seq, SeqEr, Choice, Loop1, Loop2 and BackwardsVariant are analogous to those of IL [17]
with S : N → P(World). Note that in Seq, the set of traces resulting from executing C1; C2
is given by Θ1++Θ2 (defined in Fig. 2) by point-wise combining the traces of C1 and C2.

Atom describes how executing an atom a affects the shared state: when the local state is
in p′ and the shared state is in p ∗ f , i.e. a sub-part of the shared state is in p, then executing
a with (p′ ∗p, a, ϵ, q′ ∗q)∈Axiom updates the local state from p′ to q′ and the shared sub-part
from p to q, provided that the effect on the shared state is given by a guarantee action α

(G(α)=(p, ϵ, q)). That is, the G action only captures the shared state, and the thread may
update its local state freely. In doing so, we witness α and record it in the set of traces
({[α]}). By contrast, AtomLocal states that so long as executing a does not touch the shared
state, it may update the local state arbitrarily, without recording an action.

EnvL, EnvR and EnvEr are the Atom counterparts in that they describe how the
environment may update the shared state. Specifically, EnvL and EnvR state that the
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Skip
R, G, Θ0 ⊢

[
P

]
skip

[
ok : P

] Seq
R, G, Θ1 ⊢

[
P

]
C1

[
ok : R

]
R, G, Θ2 ⊢ [R] C2 [ϵ :Q]

R, G, Θ1 ++ Θ2 ⊢ [P ] C1; C2 [ϵ :Q]

SeqEr
R, G, Θ ⊢ [P ] C1 [er :Q] er ∈ErExit

R, G, Θ ⊢ [P ] C1; C2 [er : Q]

Atom
G(α)=(p, ϵ, q) (p′ ∗ p, a, ϵ, q′ ∗ q) ∈ Axiom
R, G, {[α]} ⊢

[
p′ ∗ p ∗ f

]
a

[
ϵ :q′ ∗ q ∗ f

]
R, G, Θ0

Loop1
⊢

[
P

]
C⋆

[
ok : P

] Loop2
R, G, Θ ⊢ [P ] C⋆; C [ϵ :Q]
R, G, Θ ⊢ [P ] C⋆ [ϵ :Q]

AtomLocal
(p, a, ok, q) ∈ Axiom

R, G, {[ ]} ⊢
[
p
]

a
[
ok : q

]
BackwardsVariant
∀k. R, G, Θ⊢

[
S(k)

]
C

[
ok : S(k+1)

]
∀n>0. Θn =Θ++Θn−1

R, G, Θn ⊢
[
S(0)

]
C

[
ok : S(n)

]
Choice
R, G, Θ⊢ [P ] Ci [ϵ :Q] for some i∈{1, 2}

R, G, Θ ⊢ [P ] C1 + C2 [ϵ :Q]

Comb
R,G,Θ1 ⊢ [P ] C [ϵ :Q] R,G,Θ2 ⊢ [P ] C [ϵ :Q]

R, G, Θ1 ∪ Θ2 ⊢ [P ] C [ϵ :Q]

EnvL
R(α)=(p,ok,r) R,G,Θ⊢

[
p′∗ r∗f

]
C [ϵ :Q]

R, G, α :: Θ ⊢
[
p′ ∗ p ∗ f

]
C [ϵ :Q]

EnvR
R,G,Θ⊢

[
P

]
C

[
ok :r′∗ r∗f

]
R(α)=(r,ϵ,q)

R, G, Θ ++ {[α]} ⊢ [P ] C
[
ϵ :r′∗ q ∗ f

]
EnvEr
R(α) = (p, er , q) er ∈ ErExit

R, G, {[α]} ⊢
[

p ∗ f
]

C
[
er : q ∗ f

] Frame
R,G,Θ⊢ [P ] C [ϵ :Q] stable(R, R∪G)

R, G, Θ ⊢ [P ∗ R] C [ϵ :Q ∗ R]

ParEr
R, G, Θ ⊢ [P ] Ci [er : Q] for some i∈{1, 2}

er ∈ ErExit Θ ⊑ G
R, G, Θ ⊢ [P ] C1 || C2 [er : Q]

Cons
P ′⊆P R′, G′, Θ′⊢

[
P ′] C

[
ϵ :Q′] Q⊆Q′

R≼Θ R′ G≼Θ G′ Θ⊆Θ′

R, G, Θ ⊢ [P ] C [ϵ :Q]

Par
R1,G1,Θ1⊢ [P1] C1[ϵ :Q1] R2,G2,Θ2 ⊢ [P2] C2[ϵ :Q2]

R1 ⊆G2∪R2 R2 ⊆G1∪R1 dsj(G1,G2) Θ1∩Θ2 ̸=∅
R1 ∩ R2, G1 ∪ G2, Θ1 ∩ Θ2 ⊢ [P1 ∗ P2] C1 || C2 [ϵ :Q1 ∗ Q2]

with Θ ⊑ G def⇐⇒ ∀θ ∈Θ. θ ⊆ dom(G)
and stable(R, R) def⇐⇒ ∀(l,g)∈R, α. ∀(p, −, q)∈R(α), gq ∈q, gp ∈p, g′. g =gq ◦ g′ ⇒ (l, gp ◦ g′)∈R

Figure 3 The CASL proof rules, where R/G relations in contexts are well-formed.

current thread may be interleaved by the environment. Given α ∈ dom(R), the current
thread may execute C either after or before the environment takes action α, as captured by
EnvL and EnvR, respectively. In the case of EnvL we further require that α (in dom(R))
denote a normal (ok) execution step, as otherwise the execution would short-circuit and the
current thread could not execute C. Note that unlike in Atom, the environment action α in
EnvL and EnvR only updates the shared state; e.g. in EnvL the p sub-part of the shared
state is updated to r and the local state p′ is left unchanged. Analogously, EnvEr states
that executing C may terminate erroneously under er if it is interleaved by an erroneous
step of the environment under er . That is, if the environment takes an erroneous step, the
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execution of the current thread is terminated, as per the short-circuiting semantics of errors.
Note that Atom ensures action α is taken by the current thread (in G) only when the

thread witnesses it by executing a matching atom. By contrast, in EnvL, EnvR and EnvEr
we merely assume the environment takes action α in R. As such, each thread locally ensures
that it takes the guarantee actions in its traces. As shown in Par, when joining the threads
via parallel composition C1 || C2, we ensure their sets of traces agree: Θ1 ∩ Θ2 ≠∅. Moreover,
to ensure we can attribute each action in traces to a unique thread, we require that G1 and G2
be disjoint (dsj(G1, G2), see Fig. 2). Finally, when τ1 and τ2 respectively denote the threads
running C1 and C2, the R1 ⊆G2∪R2 premise ensures when τ1 attributes an action α to R1
(i.e. α is in R1), then α is an action of either τ2 (i.e. α is in G2) or its environment (i.e. of a
thread running concurrently with both τ1 and τ2); similarly for R2 ⊆G1∪R1.

Observe that Par can be used for both normal and erroneous triples (i.e. for any ϵ)
compositionally. This is in contrast to CISL, where only ok triples can be proved using
CISL-Par, and thus bugs can be detected only if they can be encoded as ok (see §2). In other
words, CISL cannot compositionally detect either data-agnostic bugs with short-circuiting
semantics or data-dependent bugs altogether, while CASL can detect both data-agnostic
and data-dependent bugs compositionally using Par, without the need to encode them as
ok. This is because CASL captures the environment in R, enabling compositional reasoning.
In particular, even when we do not know the program in parallel, so long as its behaviour
adheres to R, we can detect an error: R,G,Θ⊢ [P ] C [er :Q] ensures the error is reachable as
long as the environment adheres to R, without knowing the program run in parallel to C.

ParEr is the concurrent analogue of SeqEr, describing the short-circuiting semantics
of concurrent executions: given i∈{1, 2}, if running Ci in isolation results in an error, then
running C1 || C2 also yields an error. The Θ ⊑ G premise (defined in Fig. 3) ensures the
actions in Θ are from G, i.e. taken by the current thread and not assumed to have been
taken by the environment. Comb allows us to extend the traces: if the traces in both Θ1 and
Θ2 witness the execution of C, then the traces in Θ1 ∪ Θ2 also witness the execution of C.

Cons is the CASL rule of consequence. As with under-approximate logics [17, 18, 19],
the post-worlds Q may shrink (Q ⊆ Q′) and the pre-worlds P may grow (P ′ ⊆ P ). The
traces may shrink (Θ ⊆ Θ′): if traces in Θ′ witness executing C, then so do the traces in
the smaller set Θ. Lastly, R ≼Θ R′ (resp. G ≼Θ G′) defined in Fig. 2 states that the rely
(resp. guarantee) may grow or shrink so long as it preserves the behaviour of actions in Θ.
This is in contrast to RG/RGSep where the rely may only shrink and the guarantee may
only grow. This is because in RG/RGSep one must defensively prove correctness against all
environment actions at all program points, i.e. for all interleavings. Therefore, if a program
is correct under a larger environment (with more actions) R′, then it is also correct under a
smaller environment R. In CASL, however, we show an outcome is reachable under a set of
witness interleavings Θ. Hence, for traces in Θ to remain valid witnesses, the rely/guarantee
may grow or shrink, so long as they faithfully reflect the behaviours of the actions in Θ.

Lastly, Frame states that if we show R, G, Θ ⊢ [P ] C [ϵ :Q], we can also show R, G, Θ ⊢
[P ∗ R]C [ϵ :Q ∗ R], so long as the worlds in R are stable under R, G (stable(R, R ∪ G), defined
in Fig. 3), in that R accounts for possible updates. That is, given (l, g) ∈ R and α with
(p, −, q)∈R(α) ∪ G(α), if a sub-part gq of the shared g is in q (g =gq ◦ g′ for some gq ∈ q and
g′), then replacing gq with an arbitrary gp ∈p results in a world (i.e. (l, gp ◦ g′)) also in R.
CASL Soundness. We define the formal interpretation of CASL triples via semantic triples
of the form R, G, Θ |=[P ] C [ϵ :Q] (see §A). We show CASL is sound by showing its triples in
Fig. 3 induce valid semantics triples. We do this in the theorem below, with its proof in §B.

▶ Theorem 2 (Soundness). For all R, G, Θ, p, C, ϵ, q, if R, G, Θ ⊢ [p] C [ϵ :q] is derivable
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ID-VarSecret[
sτ 799K n

]
l: local x :=τ ∗

[
ok : sτ 799K(n+1) ∗ x= top−n ∗ x Z⇒(v, τ, 1)

]
ID-VarArray[
sτ 799Kn∗k >0

]
l: local x[k]:=τ {v}

[
ok :sτ 799K(n+k)∗x= top−(n+k−1)∗∗k−1

j=0 (x+j Z⇒(v,τ,0))∗k >0
]

ID-ReadArray[
k Z⇒(v, τv, b) ∗ y+v Z⇒Vy ∗ x Z⇒−

]
l: x :=τ y[k]

[
ok : k Z⇒(v, τv, b) ∗ y+v Z⇒Vy ∗ x Z⇒Vy

]
ID-SendVal[
c 7→L

]
l: send(c,v)τ

[
ok :c 7→L++[(v,τ,0)]

] ID-Send[
c 7→L∗x Z⇒V

]
l: send(c,x)τ

[
ok :c 7→L++[V ]

]
ID-Recv[
c 7→ [(v,τt,ι)]++L ∗ x Z⇒−∗(ι=0 ∨τ ∈Trust)

]
l: recv(c, x)τ

[
ok :c 7→L ∗ x Z⇒(v,τt,ι)∗(ι=0 ∨τ ∈Trust)

]
ID-RecvEr
[c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust] l: recv(c, x)τ [er : c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust]

Figure 4 The CASLID axioms

using the rules in Fig. 3, then R, G, Θ |=[p] C [ϵ :q] holds.

4 CASL for Exploit Detection

We present CASLID, a CASL instance for detecting stack-based information disclosure exploits.
In the technical appendix [?] we present CASLHID for detecting heap-based information
disclosure exploits [?, §C] and CASLMS for detecting memory safety attacks [?, §D].

The CASLID atomics, AtomID, are below, where l∈N is a label, x, y are (local) variables,
c is a shared channel and v is a value. They include assume statements and primitives
for generating a random value ∗ (local x :=τ ∗) used to model a secret value (e.g. a private
key), declaring an array x of size n initialised with v (local x[n] :=τ {v}), array assignment
l: x[k] :=τ y, sending (send(c, x) and send(c, v)) and receiving (recv(c, x)) over channel c. As
is standard, we encode if (b) then C1 else C2 as (assume(b); C1) + (assume(¬b); C2).

AtomID ∋ a ::= l: assume(b) | l: local x :=τ ∗ | l: local x[k] :=τ {v} | l: x :=τ y[k]
| l: send(c, x)τ | l: send(c, v)τ | l: recv(c, x)τ

CASLID States. A CASLID state, (s, h, h), comprises a variable stack s ∈Stack ≜ Var⇀

Ṽal, mapping variables to instrumented values; a heap h ∈Heap ≜ Loc⇀(Ṽal∪List⟨Ṽal⟩),
mapping shared locations (e.g. channel c) to (lists of) instrumented values; and a ghost
heap h∈GHeap ≜ ({s} × TId)⇀Val, tracking the stack size (s). An instrumented value,
(v, τ, ι) ∈ Ṽal≜Val × TId × {0, 1}, comprises a value (v), its provenance (τ , the thread
from which v originated), and its secret attribute (ι∈{0, 1}) denoting whether the value is
secret (1) or not (0). We use x, y as metavariables for local variables, c for shared channels,
v for values, L for value lists and V for instrumented values. State composition is defined
as (⊎, ⊎, ⊎), where ⊎ denotes disjoint function union. The state unit set is {(∅, ∅, ∅)}. We
write x Z⇒V for states in which the stack comprises a single variable x mapped on to V and
the heap and ghost heaps are empty, i.e. {([x 7→ V ], ∅, ∅)}. Similarly, we write c 7→ L for
{(∅, [c 7→L], ∅)}, and sτ 799Kv for {(∅, ∅, [(s, τ) 7→v])}.
CASLID Axioms. We present the CASLID atomic axioms in Fig. 4. We assume that each
variable declaration (via local x :=τ ∗ and local x[n] :=τ {v}) defines a fresh name, and thus
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avoid the need for variable renaming at declaration time. We assume the stack top is given by
the constant top; thus when the stack of thread τ is of size n (i.e. sτ 799K n), the next empty
stack spot is at top−n. Executing l: local x :=τ ∗ in ID-VarSecret increments the stack size
(sτ 799K n+1), reserves the next empty spot for x and initialises x with a value (v) marked
secret (1) with its provenance (thread τ). Analogously, ID-VarArray describes declaring
an array of size k, where the next k spots are reserved for x (the ∗ denotes ∗-iteration:∗n

j=1(x+j Z⇒V ) ≜ x+1 Z⇒V ∗ · · · ∗ x+n Z⇒V ). When k holds value v, ID-ReadArray reads
the vth entry of y (at y+v) in x. ID-SendVal extends the content of c with (v, τ, 0). ID-Recv
describes safe data receipt (not leading to information disclosure), i.e. the value received is
not secret (ι=0) or the recipient is trusted (τ ∈Trust≜TId\{τa}). By contrast, ID-RecvEr
describes when receiving data leads to information disclosure, i.e. the value received is secret
and the recipient is untrusted (τ ̸∈Trust), in which case the state is unchanged.
Example: InfDis. In Fig. 5 we present a CASLID proof sketch of the information disclosure
exploit in InfDis. The proof of the full program is given in Fig. 5a. Starting from Pa ∗Pv with
a singleton empty trace (Θ0, defined in Fig. 2), we use Par to pass Pa and Pv respectively
to τa and τv, analyse each thread in isolation, and combine their results (Qa and Qv) into
Qa ∗ Qv, with the two agreeing on the trace set Θ generated. Figures 5b and 5c show the
proofs of τa and τv, respectively, where we have also defined their pre- and post-conditions.

All stack variables are local and channel c is the only shared resource. As such, rely/guar-
antee relations describe how τa and τv transmit data over c: α1 and α2 capture the recv and
send in τv, while α′

1 and α′
2 capture the send and recv in τa. Using AtomLocal and CASLID

axioms, τv executes its first two instructions. It then uses Frame to frame off unneeded
resources and applies EnvL to account for τa sending (8, τa, 0) over c. Using Atom with
ID-Recv it receives this value in x. After using Cons to rewrite sec = top ∗ w = top−8
equivalently to sec=w+8 ∗ w= top−8, it applies AtomLocal with ID-ReadArray to read
from w[x] (i.e. the secret value at sec=w+8) in z. It then sends this value over c, arriving
at an error using EnvEr as the value received by the adversary τa is secret. The last line
then adds on the resources previously framed off. The proof of τa in Fig. 5b is analogous.

5 Related Work

Under-Approximate Reasoning. CASL builds on and generalises CISL [19]. As with IL
[17] and ISL [18], CASL is an instance of under-approximate reasoning. However, IL and ISL
support only sequential programs and not concurrent ones. Vanegue [22] recently developed
adversarial logic (AL) as an under-approximate technique for detecting exploits. While we
model Cv and Ca as Ca || Cv as with AL, there are several differences between AL and CASL.
CASL is a general, under-approximate framework that can be 1) used to detect both exploits
and bugs in concurrent programs, while AL is tailored towards exploits only; 2) instantiated
for different classes of bugs/exploits, while the model of AL is hard-coded. Moreover, CASL
borrows ideas from CISL to enable 3) state-local reasoning (only over parts of the state
accessed), while AL supports global reasoning only (over the entire state); and 4) thread-local
reasoning (analysing each thread in isolation), while AL accounts for all threads.
Automated Exploit Generation. Determining the exploitability of bugs is central to
prioritising fixes at large scale. Automated exploit generation (AEG) tools craft an exploit
based on predetermined heuristics and preconditioned symbolic execution of unsafe binary
programs [2, 5]. Additional improvements use random walk techniques to exploit heap buffer
overflow vulnerabilities reachable from known bugs [10, 1, 11]. Exploits for use-after-free
vulnerabilities [23] and unsafe memory write primitives [6] have also been partially automated.
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Rv(α′
1) ≜ (c 7→ [], ok, c 7→ [(n, τa, 0)]) Rv(α′

2) ≜ (c 7→ [(v, τ, 1)], ok, c 7→ []) Ra ≜ Gv Ga ≜ Rv

Gv(α1) ≜ (c 7→ [(n, τa, 0)], ok, c 7→ []) Gv(α2) ≜ (c 7→ [], ok, c 7→(v, τ, 1)) Θ ≜ {[α′
1, α1, α2, α′

2]}

∅, Ga ∪ Gv, Θ0 ⊢ [Pa ∗ Pv] // Par

Ra, Ga, Θ0 ⊢ [Pa]
l′

1: send(c, 8)τa

l′
2: recv(c, y)τa

Ra, Ga, Θ ⊢ [er : Qa]

Rv, Gv, Θ0 ⊢ [Pv]
l1: local sec :=τv ∗
l2: local w[8] :=τv{v}
l3: recv(c, x)τv
l4: z :=τv w[x]
l5: send(c, z)τv

Rv, Gv, Θ ⊢ [er : Qv]
∅, Ga ∪ Gv, Θ ⊢ [er : Qa ∗ Qv]

(a)

Ra, Ga, Θ0 ⊢
[
Pa ≜ c 7→ [] ∗ τa ̸∈Trust

]
l′

1: send(c, 8)τa // Atom + ID-SendVal
Ra, Ga, {[α′

1]}⊢
[
ok: c 7→ [(8, τa, 0)] ∗ τa ̸∈Trust

]
// EnvL × 2

Ra,Ga,{[α′
1, α1, α2]}⊢

[
ok: c 7→[(v, τv, 1)] ∗τa̸∈Trust

]
l′

2: recv(c, t)τa // Atom + ID-RecvEr
Ra, Ga, Θ ⊢

[
er : Qa ≜ c 7→[(v, τv, 1)] ∗ τa ̸∈Trust

]
(b)

Rv, Gv,

Θ0 ⊢
[
P ≜ sτv 799K 0 ∗ x Z⇒− ∗ z Z⇒− ∗ c 7→ []

]
l1: local sec :=τv ∗ // AtomLocal+ID-VarSecret

Θ0 ⊢
[
ok: sτv 799K1 ∗ x Z⇒− ∗ z Z⇒− ∗ c 7→ [] ∗ sec=top ∗ sec Z⇒(vs, τv, 1)

]
l2: local w[8] :=τv {v}; // AtomLocal + ID-VarArray

Θ0 ⊢
[
ok: sτv 799K9∗ x Z⇒−∗z Z⇒−∗ c 7→ [] ∗sec=top∗sec Z⇒(vs,τv,1)∗ w=top−8∗ ∗7

j=0(w+j Z⇒(v,τv))
]

// Frame
Θ0 ⊢

[
ok: x Z⇒−∗ z Z⇒−∗ c 7→ [] ∗ sec=top∗ sec Z⇒(vs, τv, 1)∗ w=top−8

]
// EnvL

{[α′
1]}⊢

[
ok: x Z⇒−∗ z Z⇒−∗ c 7→ [(8,τa,0)] ∗ sec=top∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
l3: recv(c, x)τv ; // (Atom + ID-Recv)

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒−∗ c 7→ [] ∗ sec=top∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
// Cons

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒−∗ c 7→ [] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
if (x ≤ 8) l4: z :=τv w[x] // AtomLocal+ID-ReadArray

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
l5: send(c, z)τv // Atom+ID-Send

{[α′
1,α1,α2]}⊢

[
ok: x Z⇒(8,τa,0)∗z Z⇒(vs,τv,1)∗ c 7→[(vs,τv,1)] ∗sec=w+8∗sec Z⇒(vs,τv,1)∗w=top−8

]
// EnvEr
Θ⊢

[
er : x Z⇒(8,τa,0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [(vs, τv, 1)] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
Θ⊢

[
er : Qv≜ sτv 799K 9∗ x Z⇒(8, τa, 0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [(vs, τv, 1)] ∗ sec=w+8∗ sec Z⇒(vs, τv, 1)

∗w=top−8 ∗ ∗7
j=0(w+j Z⇒(v, τv))

]
(c)

Figure 5 Proofs of InfDis (a), its adversary (b) and vulnerable (c) programs

As with CASL, AEG tools are fundamentally under-approximate and may not find all
attacks. Assumptions made by AEG tools are hard-coded in their implementation, in contrast
to CASL which can be instantiated for new classes of vulnerabilities without redesigning the
core logic from scratch. Finally, traditional AEG tools have no notion of locality and require
global reasoning, making existing tools unable to cope with the path explosion problem and
large targets without compromising coverage. By contrast, CASL mostly acts on local states,
making it more suitable for large-scale exploit detection than current tools.
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a a−→ skip

C1
l−→ C′

1

C1; C2
l−→ C′

1; C2 skip; C id−→ C

i ∈ {1, 2}

C1 + C2
id−→ Ci C⋆ id−→ skip C⋆ id−→ C; C⋆

C1
l−→ C′

1

C1 || C2
l−→ C′

1 || C2

C2
l−→ C′

2

C1 || C2
l−→ C1 || C′

2 skip || C id−→ C C || skip id−→ C

skip, m 0=⇒ ok, m

er ∈ ErExit C l−→ C′ (m, m′) ∈ JlKer

C, m 1=⇒ er , m′

C l−→ C′ (m, m′′) ∈ JlKok
C′, m′′ n=⇒ ϵ, m′

C, m n+1==⇒ ϵ, m′

Figure 6 The CASL control flow transitions (above); the CASL operational semantics (below)

A The CASL Operational Semantics and Semantic Triples
CASL Machine States and Operational Semantics. The states in State (Def. 1)
denote a high-level representation of the program state, while the low-level representation of
the memory is given by machine states, MState, also supplied as a CASL parameter. As
atomic commands (Atom) are a CASL parameter, we also parametrise their semantics given
as machine state transformers: we assume an atomic semantics function J.KA : Atom →
Exit → P(MState × MState).

As in CISL, we formulate the CASL operational semantics by separating its control
flow transitions (describing the sequential execution steps in each thread) from its state-
transforming transitions (describing how the underlying machine states determine the overall
execution of a (concurrent) program). The CASL control flow transitions at the top of
Fig. 6 are of the form C l−→ C′, where l ∈ Lab ≜ Atom ⊎ {id} denotes the transition label,
which may be either id for silent transitions (no-ops), or a∈Atom for executing an atomic
command a. The state-transforming function, J.K : Lab → Exit → P(MState × MState),
is an extension of J.KA, where given a transition label l, the JlKϵ is defined as 1) JlKAϵ when
l ∈ Atom; 2) {(m, m) | m ∈ MState} when l=id and ϵ=ok; and 3) ∅ when l=id and
ϵ ∈ ErExit. That is, atomic transitions transform the state as per their semantics, while
no-op transitions (id) always execute normally and leave the state unchanged.

The CASL state-transforming transitions are given at the bottom of Fig. 6 and are of the
form C, m n=⇒ ϵ, m′, stating that starting from machine state m, program C terminates after n

steps in machine state m′ under ϵ . The first transition states that skip trivially terminates
(after zero steps) successfully (under ok) and leaves the underlying state unchanged. The
second transition states that starting from m, program C terminates erroneously (with
er ∈ ErExit) after one step in m′ if it takes an erroneous step. The last transition states
that if C takes one normal (ok) step transforming m to m′′, and the resulting program C′′

subsequently terminates after n steps with ϵ transforming m′′ to m′, then the overall program
terminates after n+1 steps with ϵ transforming m to m′.

We define the notion of world erasure, ⌊.⌋ : World → P(MState), relating a CASL
world (l, g) to a set of machine states, by first composing l and g together into the state l ◦ g,
and then erasing the resulting state via the state erasure function ⌊.⌋S.

▶ Definition 3 (World erasure). The world erasure function, ⌊.⌋ : World → P(MState),
is defined as: ⌊w⌋ ≜ ⌊TwU⌋S with T(l, g)U ≜ l ◦ g.

In order to account for local atomic executions in AtomLocal, we introduce the notion
of instrumented traces. An instrumented trace is a sequence of AId ∪ {L}, where each entry
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is either 1) an action α ∈ AId, denoting the execution of an action (in rely or guarantee)
that changes the underlying shared state; or 2) the token L, denoting a local execution that
leaves the shared state unchanged.

▶ Definition 4 (Instrumented traces). The set of instrumented traces is δ ∈ ITrace ≜
List⟨AId ∪ {L}⟩. The trace erasure, ⌊.⌋ : ITrace → Trace, is defined as follows:

⌊[ ]⌋ ≜ [ ] ⌊α :: δ⌋ ≜ α :: ⌊δ⌋ ⌊L :: δ⌋ ≜ ⌊δ⌋

Notation. Given a world w = (l, g), we write wL and wG for l and g, respectively.
To show CASL is sound we must show that its (syntactic) triples in Fig. 3 induce valid

semantics triples: if R, G, Θ ⊢ [P ] C [ϵ :Q] is derivable using the rules in Fig. 3, then
R, G, Θ |= [P ] C [ϵ :Q] holds, as defined below. Note that we must also show this for the
atomic axioms (Axiom) as they are lifted to CASL rules via Atom and AtomLocal. As atomic
axioms are a CASL parameter, we thus require that they (1) induce valid semantic triples;
and (2) preserve all ∗-compatible states. Condition (1) ensures that Atom/AtomLocal induce
valid semantic triples; concretely, (p, a, ϵ, q) induces a valid semantic triple iff every machine
state mq ∈⌊q⌋S is reachable under ϵ by executing a on some mp ∈⌊p⌋S, i.e. (mp, mq)∈JaKAϵ.
Condition (2) ensures that atomic commands of one thread preserve the states of concurrent
threads in the environment and is necessary for the soundness of Frame. Putting the two
together, we assume atomic soundness (a CASL parameter) as follows:

∀(p, a, ϵ, q)∈Axiom, l. ∀mq ∈⌊q ∗ {l}⌋S. ∃mp ∈⌊p ∗ {l}⌋S. (mp, mq)∈JaKAϵ

(SoundAtoms)

Semantic CASL Triples. We next present the formal interpretation of CASL triples.
Recall that a semantic CASL triple R, G, Θ |= [P ] C [ϵ :Q] states that every world in q can
be reached in n steps (for some n) under ϵ for every trace θ∈Θ by executing C on some world
in P , with the actions of the current thread (executing C) and its environment adhering to
G and R, respectively. Put formally: R, G, Θ |= [P ] C [ϵ :Q] def⇐⇒ ∀θ ∈ Θ. R, G, θ |= [P ] C
[ϵ :Q], where

R, G, θ |= [P ] C [ϵ :Q] def⇐⇒ ∃δ. ⌊δ⌋=θ ∧ ∀wq ∈Q. ∃n. reachn(R, G, θ, P, C, ϵ, wq)

with:

reachn(R, G, θ, P, C, ϵ, w) def⇐⇒ ∃k, δ′, α, p, q, r, R, a, C′.

n=0 ∧ δ=[ ] ∧ ϵ=ok ∧ C id−→∗skip ∧ w ∈ P

∨ n=1 ∧ ϵ∈ErExit ∧ δ=[α] ∧ R(α)=(p, ϵ, q) ∧ rely(p, q, P, {w})
∨ n=1 ∧ ϵ∈ErExit ∧ δ=[α] ∧ G(α)=(p, ϵ, q) ∧ guar(p, q, P, {w}, C, C′, a, ϵ)
∨ n=k+1 ∧ δ=[α] ++ δ′∧ R(α)=(p, ok, r) ∧ rely(p, r, P, R) ∧ reachk(R, G, δ′, R, C, ϵ, w)
∨ n=k+1 ∧ δ=[α] ++ δ′∧ G(α)=(p, ok, r) ∧ guar(p, r, P, R, C, C′, a, ok) ∧ reachk(R, G, δ′, R, C′, ϵ, w)
∨ n=k+1 ∧ δ=[L] ++ δ′∧ C, P

a
⇝L C′, R, ok ∧ reachk(R, G, δ′, R, C′, ϵ, w)

and

rely(p, q, P, Q) def⇐⇒ ∀w ∈Q.∃gq ∈q.wG=gq ◦ − ∧ ∀gq ∈q, (l, gq ◦ g)∈Q.∅⊂
{

(l, gp ◦ g) gp ∈p
}

⊆P

guar(p, q, P, Q, C, C′, a, ϵ) def⇐⇒ ∀wq ∈Q. ∃gq ∈q, gp ∈p, wp ∈P, g. wG
p =gp ◦ g ∧ wG

q =gq ◦ g ∧ C, wp
a
⇝ C′, wq, ϵ

C, wp
a
⇝ C′, wq, ϵ

def⇐⇒ C id−→∗ a−→ C′∧ ∀l. ∀mq ∈⌊TwqU ◦ l⌋. ∃mp ∈⌊TwpU ◦ l⌋. (mp, mq)∈JaKϵ
C, wp

a
⇝L C′, wq, ϵ

def⇐⇒ C, wp
a
⇝ C′, wq, ϵ ∧ wG

p =wG
q

C, P
a
⇝L C′, Q, ϵ

def⇐⇒ ∀wq ∈Q. ∃wp ∈P. C, wp
a
⇝L C′, wq, ϵ
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The first disjunct in reach simply states that any world (l, g) ∈ P can be simply reached
under ok in zero steps with an empty trace [ ], provided that C simply reduces to skip silently,
i.e. without executing any atomic steps (C id−→∗skip). The next two disjuncts capture the
short-circuit semantics of errors (ϵ∈ErExit). Specifically, the second disjunct states that
mq can be reached in one step under error ϵ when the environment executes a corresponding
action α, i.e. when R(α)=(p, ϵ, q), mq ∈⌊q⌋ and ⌊p⌋ ⊆ P ; the trace of such execution is then
given by [α]. Similarly, the third disjunct states that mq can be reached in one step under ϵ

when the current thread executes a corresponding action α (G(α)=(p, ϵ, q)). Moreover, the
current thread must fulfil the specification (p, ϵ, q) of α by executing an atomic instruction
a: C may take several silent steps reducing C to C′ (C id−→∗C′) and subsequently execute
a, reducing p to q under ϵ (C′, p

a
⇝ −, q, ϵ). The latter ensures that C′ can be reduced by

executing a (C′ a−→ −) and all states in q are reachable under ϵ from some state in p by
executing a: ∀mq ∈ ⌊q⌋. ∃mp ∈ ⌊p⌋. (mp, mq) ∈ JaKϵ. Analogously, the last two disjuncts
capture the inductive cases (n=k+1) where either the environment (penultimate disjunct) or
the current thread (last disjunct) take an ok step, and mq is subsequently reached in k steps
under ϵ.
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B CASL Soundness

We introduce the following additional rules and later in Theorem 23 show that they are
sound:

SkipEnv
R(α) = (p, ϵ, q) wf(R, G)

R, G, {[α]} ⊢
[

p ∗ f
]

skip
[
ϵ : q ∗ f

] EndSkip
R, G, Θ ⊢ [P ] C [ϵ :Q]

R, G, Θ ⊢ [P ] C; skip [ϵ :Q]

In the following, whenever we write reach(.)(R, G, ., ., ., ., .), we assume wf(R, G) holds.

▶ Lemma 5. For all R, G, w, P, C, if w ∈P and C id−→∗skip, then reach0(R, G, [ ], P, C, ok, w)
holds.

Proof. Follows immediately from the definition of reach0. ◀

▶ Corollary 6. For all R, G, w, P , if w∈P , then reach0(R, G, [ ], P, skip, ok, w) holds.

Proof. Follows immediately from Lemma 5 and since skip id−→∗skip. ◀

▶ Lemma 7. For all n, R, G, δ, P, w, C, ϵ, if reachn(R, G, δ, P, C, ϵ, w) then P ̸= ∅.

Proof. By induction on n.

Case n=0
Pick arbitrary R, G, δ, P, w, C, ϵ such that reach0(R, G, δ, P, C, ϵ, w). From the definition of
reach0 we then have w ∈ P and thus P ̸= ∅, as required.

Case n=1, ϵ ∈ ErExit
Pick arbitrary R, G, δ, P, w, C, ϵ such that reachn(R, G, δ, P, C, ϵ, w). We then know that there
exists α, p, q, a, C′ such that either:
1) δ = [α], R(α) = (p, ϵ, q), rely(p, q, P, {w}); or
2) δ = [α], G(α)=(p, ϵ, q), guar(p, q, P, {w}, C, C′, a, ϵ).

In case (1), from the definition of rely(p, q, P, {w}) we know there exists gq ∈ q, l, g such
that w = (l, gq ◦ g) and ∅ ⊂

{
(l, gp ◦ g) gp ∈ p

}
⊆ P , i.e. P ̸= ∅, as required.

In case (2), from the definition of guar(p, q, P, {w}, C, C′, a, ϵ) we know there exists gq ∈ q,
gp ∈ p, g and wp ∈ P such that wG

p = gp ◦ g, wG = gq ◦ g and C, wp
a
⇝ C′, w, ok. That is,

since wp ∈ P , we have P ̸= ∅, as required.

Case n=k+1

∀R, G, δ, P, w, C, ϵ. reachk(R, G, δ, P, C, ϵ, w) ⇒ P ̸= ∅ (I.H)

Pick arbitrary R, G, δ, P, w, C, ϵ such that reachn(R, G, δ, P, C, ϵ, w).
From reachn(R, G, δ, P, C, ϵ, w) we then know that there exist α, δ′, p, r, C′, a, R such that

either:
1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P, R) and reachk(R, G, δ′, R, C, ϵ, w); or
2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P, R, C, C′, a, ok), reachk(R, G, δ′, R, C′, ϵ, w); or
3) δ=[L] ++ δ′, reachk(R, G, δ′, R, C′, ϵ, w) and C, P

a
⇝L C′, R, ok.

In case (1), from reachk(R, G, δ′, R, C, ϵ, w) and I.H we know R ̸= ∅. Thus let us pick an
arbitrary wr ∈ R. From the definition of rely(p, r, P, R) we know there exists gr ∈ r, l, g such
that wr = (l, gr ◦ g) and ∅ ⊂

{
(l, gp ◦ g) gp ∈ p

}
⊆ P , i.e. P ̸= ∅, as required.
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In case (2), from reachk(R, G, δ′, R, C′, ϵ, w) and I.H we know R ̸= ∅. Thus let us pick an
arbitrary wr ∈ R. From the definition of guar(p, q, P, R, C, C′, a, ok) we know there exists
gr ∈ r, gp ∈ p, g and wp ∈ P such that wG

p = gp ◦ g, wG
r = gr ◦ g and C, wp

a
⇝ C′, wr, ok. That

is, since wp ∈ P , we have P ̸= ∅, as required.
In case (3), from reachk(R, G, δ′, R, C′, ϵ, w) and I.H we know R ̸= ∅. Thus let us pick

an arbitrary wr ∈ R. From C, P
a
⇝L C′, R, ok, we know there exists wp ∈ P such that

C, wp
a
⇝L C′, wr, ok. That is, since wp ∈ P , we have P ̸= ∅, as required. ◀

▶ Lemma 8. For all n, R, G, δ, P, C1, C2, ϵ, wq, if ϵ ∈ ErExit and reachn(R, G, δ, P, C1, ϵ,

wq), then reachn(R, G, δ, P, C1; C2, ϵ, wq).

Proof. We proceed by induction on n.

Case n = 1, ϵ ∈ ErExit
We then know that there exists α, p, q, a, C′

1 such that either:
1) δ = [α], R(α) = (p, ϵ, q), rely(p, q, P, {wq}); or
2) δ = [α], G(α)=(p, ϵ, q), guar(p, q, P, {wq}, C1, C′

1, a, ϵ).
In case (1), from the definition of reach we have reach1(R, G, [α], P, C1; C2, ϵ, wq), as

required.
In case (2), from guar(p, q, P, {wq}, C1, C′

1, a, ϵ) we know there exists gq ∈ q, gp ∈ p, g

and wp ∈ P such that wG
p = gp ◦ g, wG

q = gq ◦ g and C1, wp
a
⇝ C′

1, wq, ϵ. As such,
from C1, wp

a
⇝ C′

1, wq, ϵ, the definition of a
⇝ and control flow transitions we also have

C1; C2, wp
a
⇝ C′

1; C2, wq, ϵ. Consequently, by definition we also have guar(p, q, P, {wq}, C1; C2,

C′
1; C2, a, ϵ), and thus from the definition of reach we also have reach1(R, G, [α], P, C1; C2, ϵ,

wq), as required.

Case n = k+1

∀R, G, δ, P, C1, C2, ϵ, wq.

ϵ ∈ ErExit ∧ reachk(R, G, δ, P, C1, ϵ, wq) ⇒ reachk(R, G, δ, P, C1; C2, ϵ, wq) (I.H)

We then know that there exist α, δ′, p, r, C′
1, a, R such that either:

1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P, R) and reachk(R, G, δ′, R, C1, ϵ, wq); or
2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P, R, C1, C′

1, a, ok), reachk(R, G, δ′, R, C′
1, ϵ, wq); or

3) δ=[L] ++ δ′, reachk(R, G, δ′, R, C′
1, ϵ, wq) and C1, P

a
⇝L C′

1, R, ok.
In case (1), from reachk(R, G, δ′, R, C1, ϵ, wq) and (I.H) we have reachk(R, G, δ′, R, C1; C2,

ϵ, wq). Consequently, as δ=[α] ++ δ′, R(α)=(p, ok, r) and rely(p, r, P, R), by definition of
reach we also have reachn(R, G, δ, P, C1; C2, ϵ, wq), as required.

In case (2), from reachk(R, G, δ′, R, C′
1, ϵ, wq) and (I.H) we have reachk(R, G, δ′, R, C′

1; C2,

ϵ, wq). Pick an arbitrary wr ∈ R. From guar(p, r, P, R, C1, C′
1, a, ok) we know there exists

gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

r = gr ◦ g and C1, wp
a
⇝ C′

1, wr, ok. As
such, from the definition of a

⇝ and the control flow transitions we also have C1; C2, wp
a
⇝

C′
1; C2, wr, ok, and thus from the definition of guar we also have guar(p, r, P, R, C1; C2, C′

1; C2,

a, ok). Consequently, as δ=[α] ++ δ′, G(α)=(p, ok, r) and guar(p, r, P, R, C1; C2, C′
1; C2, a, ok),

from the definition of reach we also have reachn(R, G, δ, P, C1; C2, ϵ, wq), as required.
In case (3), from reachk(R, G, δ′, R, C′

1, ϵ, wq) and (I.H) we have reachk(R, G, δ′, R, C′
1; C2,

ϵ, wq). Moreover, from reachk(R, G, δ′, R, C′
1, ϵ, wq) and Lemma 7 we know R ̸= ∅. As

such, from C1, P
a
⇝L C′

1, R, ok, we know C1
id−→ ∗ a−→ C′

1 and thus from the control flow
transitions (Fig. 6) we know C1; C2

id−→∗ a−→ C′
1; C2. Therefore, from C1, P

a
⇝L C′

1, R, ok we
also have C1; C2, P

a
⇝L C′

1; C2, R, ok. Consequently, from reachk(R, G, δ′, R, C′
1; C2, ϵ, wq),
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C1; C2, P
a
⇝L C′

1; C2, R, ok, δ=[L] ++ δ′ and the definition of reach we also have reachn(R, G,

δ, P, C1; C2, ϵ, wq), as required. ◀

▶ Lemma 9. For all n, R, G, δ, P, C1, C2, ϵ, wq, if ϵ ∈ ErExit, ⌊δ⌋ ⊆ dom(G) and reachn(R,

G, δ, P, C1, ϵ, wq), then reachn(R, G, δ, P, C1 || C2, ϵ, wq).

Proof. We proceed by induction on n.

Case n = 1
As ϵ ∈ ErExit and ⌊δ⌋ ⊆ dom(G), we then know that there exists α, p, q, a, C′

1 such that
δ = [α], G(α)=(p, ϵ, q) and guar(p, q, P, {wq}, C1, C′

1, a, ϵ). From guar(p, q, P, {wq}, C1, C′
1, a,

ϵ) we know there exists gq ∈ q, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

q = gq ◦ g

and C1, wp
a
⇝ C′

1, wq, ϵ. As such, from C1, wp
a
⇝ C′

1, wq, ϵ, the definition of a
⇝ and control

flow transitions we also have C1 || C2, wp
a
⇝ C′

1 || C2, wq, ϵ. Consequently, by definition we also
have guar(p, q, P, {wq}, C1 || C2, C′

1 || C2, a, ϵ), and thus from the definition of reach we also
have reach1(R, G, [α], P, C1 || C2, ϵ, wq), as required.

Case n = k+1

∀R, G, δ, P, C1, C2, ϵ, wq.

ϵ ∈ ErExit ∧ reachk(R, G, δ, P, C1, ϵ, wq) ⇒ reachk(R, G, δ, P, C1; C2, ϵ, wq) (I.H)

As ⌊δ⌋ ⊆ dom(G), we then know that there exist α, δ′, p, r, C′
1, a, R such that either:

1) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P, R, C1, C′
1, a, ok), reachk(R, G, δ′, R, C′

1, ϵ, wq); or
2) δ=[L] ++ δ′, reachk(R, G, δ′, R, C′

1, ϵ, wq) and C1, P
a
⇝L C′

1, R, ok.
In case (1), from reachk(R, G, δ′, R, C′

1, ϵ, wq) and (I.H) we have reachk(R, G, δ′, R, C′
1 || C2,

ϵ, wq). Pick an arbitrary wr ∈ R. From guar(p, r, P, R, C1, C′
1, a, ok) we know there ex-

ists gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

r = gr ◦ g and C1, wp
a
⇝

C′
1, wr, ok. As such, from the definition of a

⇝ and the control flow transitions we also have
C1 || C2, wp

a
⇝ C′

1 || C2, wr, ok, and thus from the definition of guar we also have guar(p, r,

P, R, C1 || C2, C′
1 || C2, a, ok). Consequently, as δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P, R,

C1 || C2, C′
1; C2, a, ok) and reachk(R, G, δ′, R, C′

1 || C2, ϵ, wq), from the definition of reach we
also have reachn(R, G, δ, P, C1 || C2, ϵ, wq), as required.

In case (2), from reachk(R, G, δ′, R, C′
1, ϵ, wq) and (I.H) we have reachk(R, G, δ′, R, C′

1 || C2,

ϵ, wq). Moreover, from reachk(R, G, δ′, R, C′
1, ϵ, wq) and Lemma 7 we know R ̸= ∅. As

such, from C1, P
a
⇝L C′

1, R, ok, we know C1
id−→ ∗ a−→ C′

1 and thus from the control flow
transitions (Fig. 6) we know C1 || C2

id−→∗ a−→ C′
1 || C2. Therefore, from C1, P

a
⇝L C′

1, R, ok we
also have C1 || C2, P

a
⇝L C′

1 || C2, R, ok. Consequently, from reachk(R, G, δ′, R, C′
1 || C2, ϵ, wq),

C1 || C2, P
a
⇝L C′

1 || C2, R, ok, δ=[L] ++ δ′ and the definition of reach we have reachn(R, G, δ,

P, C1 || C2, ϵ, wq), as required. ◀

▶ Lemma 10. For all n, R, G, δ, P, C1, C2, ϵ, wq, if ϵ ∈ ErExit, ⌊δ⌋ ⊆ dom(G) and reachn(R,

G, δ, P, C2, ϵ, wq), then reachn(R, G, δ, P, C1 || C2, ϵ, wq).

Proof. The proof is analogous to the proof of Lemma 9 and is omitted. ◀

▶ Lemma 11. For all n, R, G, δ, P, wq, C1, C2, ϵ, if reachn(R, G, δ, P, C2, ϵ, wq) and C1
id−→∗C2,

then reachn(R, G, δ, P, C1, ϵ, wq).

Proof. By induction on n.
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Case n=0
Pick arbitrary R, G, δ, P, wq, C1, C2, ϵ such that reach0(R, G, δ, P, C2, ϵ, wq) and C1

id−→ ∗C2.
From the definition of reach0 we then know δ=[ ], ϵ=ok, C2

id−→∗skip and wq ∈ P . We thus
have C1

id−→∗C2
id−→∗skip, i.e. C1

id−→∗skip. Consequently, as δ=[ ], ϵ=ok and wq ∈ P , we also
have reach0(R, G, δ, P, C1, ϵ, wq), as required.

Case n=1, ϵ ∈ ErExit
Pick arbitrary R, G, δ, P, wq, C1, C2, ϵ such that reachn(R, G, δ, P, C2, ϵ, wq) and C1

id−→∗C2. We
then know that there exists α, p, q, a, C′

2 such that either:
1) δ = [α], R(α) = (p, ϵ, q), rely(p, q, P, {wq}); or
2) δ = [α], G(α)=(p, ϵ, q), guar(p, q, P, {wq}, C2, C′

2, a, ϵ).
In case (1), from the definition of reach we also have reach1(R, G, δ, P, C1, ϵ, wq), as

required.
In case (2), from guar(p, q, P, {wq}, C2, C′

2, a, ϵ) we know there exists gq ∈q, gp ∈p, g and
wp ∈P such that wG

p =gp ◦ g, wG
q =gq ◦ g and C2, wp

a
⇝ C′

2, wq, ok. As such, from the definition
of a
⇝, the control flow transitions and C1

id−→∗C2 we have C1, wp
a
⇝ C′

2, wq, ok, and thus
from the definition of guar we have guar(p, q, P, {wq}, C1, C′

2, a, ϵ). Consequently, as δ=[α],
G(α)=(p, ok, q) and guar(p, r, P, {wq}, C1, C′

2, a, ϵ), from the definition of reach we also have
reach1(R, G, δ, P, C1, ϵ, wq), as required.

Case n=k+1
∀R, G, δ, P, wq, C1, C2, ϵ. reachk(R, G, δ, P, C2, ϵ, wq) ∧ C1

id−→∗C2 ⇒ reachk(R, G, δ, P, C1, ϵ, wq)
(I.H)

Pick arbitrary R, G, δ, P, wq, C1, C2, ϵ such that reachn(R, G, δ, P, C2, ϵ, wq) and C1
id−→∗C2.

From reachn(R, G, δ, P, C2, ϵ, wq) we then know that there exist α, δ′, p, r, C′
2, a, R such

that either:
1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P, R) and reachk(R, G, δ′, R, C2, ϵ, wq); or
2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P, R, C2, C′

2, a, ok), reachk(R, G, δ′, R, C′
2, ϵ, wq); or

3) δ=[L] ++ δ′, reachk(R, G, δ′, R, C′
2, ϵ, wq) and C2, P

a
⇝L C′

2, R, ok.
In case (1), from reachk(R, G, δ′, R, C2, ϵ, wq) and (I.H) we have reachk(R, G, δ′, R, C1, ϵ,

wq). Consequently, as δ=[α] ++ δ′, R(α)=(p, ok, r) and rely(p, r, P, R), by definition of reach
we have reachn(R, G, δ, P, C1, ϵ, wq), as required.

In case (2), pick an arbitrary wr ∈ R. From guar(p, r, P, R, C2, C′
2, a, ok) we know there

exists gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦g, wG

r = gr ◦g and C2, wp
a
⇝ C′

2, wr, ok.
As such, from the definition of a

⇝, the control flow transitions and since C1
id−→∗C2, we also

have C1, wp
a
⇝ C′

2, wr, ok, and thus from the definition of guar we also have guar(p, r, P, R, C1,

C′
2, a, ok). Consequently, as δ=[α] ++ δ′, G(α)=(p, ok, r), reachk(R, G, δ′, R, C′

2, ϵ, wq) and
guar(p, r, P, R, C1, C′

2, a, ok), from the definition of reach we also have reachn(R, G, δ, P, C1, ϵ,

wq), as required.
In case (3), from reachk(R, G, δ′, R, C′

2, ϵ, wq) we know R ̸= ∅ and thus from C2, P
a
⇝L

C′
2, R, ok, we know C2

id−→∗ a−→ C′
2 and thus from the control flow transitions (Fig. 6) and since

C1
id−→∗C2, we know C1

id−→∗ a−→ C′
2. As such, from C2, P

a
⇝L C′

2, R, ok we also have C1, P
a
⇝L

C′
2, R, ok. Consequently, from δ=[L] ++ δ′, reachk(R, G, δ′, R, C′

2, ϵ, wq), C1, P
a
⇝L C′

2, R, ok
and the definition of reach we also have reachn(R, G, δ, P, C1, ϵ, wq), as required. ◀

▶ Lemma 12. for all n, R, G, P, δ, ϵ, C1, if reachn(R, G, δ, P, C1, ϵ, w) and C2
id−→∗skip, then

reachn(R, G, δ, P, C1; C2, ϵ, w).
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Proof. By induction on n.

Case n=0
Pick arbitrary R, G, δ, P, wq, C1, C2, ϵ such that reach0(R, G, δ, P, C1, ϵ, wq) and C2

id−→∗skip.
From the definition of reach0 we then know δ=[ ], ϵ=ok, C1

id−→∗skip and wq ∈ P . We thus
have C1; C2

id−→∗skip; C2
id−→∗C2

id−→∗skip, i.e. C1; C2
id−→∗skip. Consequently, as δ=[ ], ϵ=ok and

wq ∈ P , we also have reach0(R, G, δ, P, C1; C2, ϵ, wq), as required.

Case n=1, ϵ ∈ ErExit
Pick arbitrary R, G, δ, P, wq, C1, C2, C′

1, ϵ such that reachn(R, G, δ, P, C1, ϵ, wq) and C2
id−→∗C2.

We then know that there exists α, p, q, a, C′
2 such that either:

1) δ = [α], R(α) = (p, ϵ, q), rely(p, q, P, {wq}); or
2) δ = [α], G(α)=(p, ϵ, q), guar(p, q, P, {wq}, C1, C′

1, a, ϵ).
In case (1), from the definition of reach we also have reach1(R, G, δ, P, C1; C2, ϵ, wq), as

required.
In case (2), from guar(p, q, P, {wq}, C1, C′

1, a, ϵ) we know there exists gq ∈ q, gp ∈ p, g and
wp ∈ P such that wG

p = gp ◦ g, wG
q = gq ◦ g and C1, wp

a
⇝ C′

1, wq, ok. As such, from the
definition of a

⇝ and the control flow transitions we also have C1; C2, wp
a
⇝ C′

1; C2, wq, ok, and
thus from the definition of guar we also guar(p, q, P, {wq}, C1; C2, C′

1; C2, a, ϵ). Consequently,
as δ=[α], G(α)=(p, ok, q) and guar(p, r, P, {wq}, C1; C2, C′

1; C2, a, ϵ), from the definition of
reach we also have reach1(R, G, δ, P, C1; C2, ϵ, wq), as required.

Case n=k+1

∀R, G, δ, P, wq, C1, C2, ϵ. reachk(R, G, δ, P, C1, ϵ, wq) ∧ C2
id−→∗skip ⇒ reachk(R, G, δ, P, C1; C2, ϵ, wq)

(I.H)

Pick arbitrary R, G, δ, P, wq, C1, C2, ϵ such that reachn(R, G, δ, P, C1, ϵ, wq) and C2
id−→∗skip.

From reachn(R, G, δ, P, C1, ϵ, wq) we then know that there exist α, δ′, p, r, C′
1, a, R such

that either:
1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P, R) and reachk(R, G, δ′, R, C1, ϵ, wq); or
2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P, R, C1, C′

1, a, ok), reachk(R, G, δ′, R, C′
1, ϵ, wq); or

3) δ=[L] ++ δ′, reachk(R, G, δ′, R, C′
1, ϵ, wq) and C1, P

a
⇝L C′

1, R, ok.
In case (1), from reachk(R, G, δ′, R, C1, ϵ, wq) and (I.H) we have reachk(R, G, δ′, R, C1; C2,

ϵ, wq). Consequently, as δ=[α] ++ δ′, R(α)=(p, ok, r) and rely(p, r, P, R), by definition of
reach we have reachn(R, G, δ, P, C1; C2, ϵ, wq), as required.

In case (2), from reachk(R, G, δ′, R, C′
1, ϵ, wq) and (I.H) we have reachk(R, G, δ′, R, C′

1; C2,

ϵ, wq). Pick an arbitrary wr ∈ R. From guar(p, r, P, R, C1, C′
1, a, ok) we know there exists

gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

r = gr ◦ g and C1, wp
a
⇝ C′

1, wr, ok. As
such, from the definition of a

⇝ and the control flow transitions we also have C1; C2, wp
a
⇝

C′
1; C2, wr, ok, and thus from the definition of guar we also have guar(p, r, P, R, C1; C2, C′

1; C2,

a, ok). Consequently, as δ=[α] ++ δ′, G(α)=(p, ok, r), reachk(R, G, δ′, R, C′
1; C2, ϵ, wq) and

guar(p, r, P, R, C1; C2, C′
1; C2, a, ok), from the definition of reach we also have reachn(R, G, δ,

P, C1; C2, ϵ, wq), as required.
In case (3), from reachk(R, G, δ′, R, C′

1, ϵ, wq) and I.H we have reachk(R, G, δ′, R, C′
1; C2,

ϵ, wq). As such, from C1, P
a
⇝L C′

1, R, ok, the definition of a
⇝L and control flow transitions

we have C1; C2, P
a
⇝L C′

1; C2, R, ok. Consequently, from reachk(R, G, δ′, R, C′
1; C2, ϵ, wq),

C1; C2, P
a
⇝L C′

1; C2, R, ok, δ=[L]++δ′ and the definition of reach we have reachn(R, G, δ, P,

C1; C2, ϵ, wq), as required. ◀
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▶ Definition 13. The weak reachability predicate, wreach, is defined as follows:

wreachn(R, G, δ, P, C, ϵ, w) def⇐⇒ ∃k, δ′, α, p, q, r, R, a, C′.

n≥0 ∧ δ=[ ] ∧ ϵ=ok ∧ C id−→∗skip ∧ w ∈ P

∨ n≥1 ∧ ϵ∈ErExit ∧ δ=[α] ∧ R(α)=(p, ϵ, q) ∧ rely(p, q, P, {w})
∨ n≥1 ∧ ϵ∈ErExit ∧ δ=[α] ∧ G(α)=(p, ϵ, q) ∧ guar(p, q, P, {w}, C, C′, a, ϵ)
∨ n=k+1 ∧ δ=[α] ++ δ′∧ R(α)=(p, ok, r) ∧ rely(p, r, P, R) ∧ wreachk(R, G, δ′, R, C, ϵ, w)
∨ n=k+1 ∧ δ=[α] ++ δ′∧ G(α)=(p, ok, r) ∧ guar(p, r, P, R, C, C′, a, ok) ∧ wreachk(R, G, δ′, R, C′, ϵ, w)
∨ n=k+1 ∧ δ=[L] ++ δ′∧ C, P

a
⇝L C′, R, ok ∧ wreachk(R, G, δ, R, C′, ϵ, w)

▶ Proposition 14. For all n, R, G, δ, P, C, ϵ, w, k, if reachn(R, G, δ, P, C, ϵ, w) and k ≥ n, then
wreachk(R, G, δ, P, C, ϵ, w).

▶ Proposition 15. For all n, R, G, δ, P, C, ϵ, w, if wreachn(R, G, δ, P, C, ϵ, w), then there exists
k ≤ n such that reachk(R, G, δ, P, C, ϵ, w).

▶ Lemma 16. For all n, k, R, G, δ1, δ2, P, R, wq, wr, C1, C2, ϵ, if wreachk(R, G, δ2, R, C2, ϵ, wq)
and ∀wr ∈ R. wreachn(R, G, δ1, P, C1, ok, wr), then wreachn+k(R, G, δ1 ++ δ2, P, C1; C2, ϵ,

wq).

Proof. By induction on n.

Case n=0
Pick arbitrary k, R, G, δ1, δ2, P, R, wq, wr, C1, C2, ϵ such that wreachk(R, G, δ2, R, C2, ϵ, wq)
and ∀wr ∈ R. wreach0(R, G, δ1, P, C1, ok, wr).

From wreachk(R, G, δ2, R, C2, ϵ, wq) and Lemma 7 we know R ̸= ∅. Pick an arbitrary
wr ∈ R; we then have wreach0(R, G, δ1, P, C1, ok, wr). Consequently, from the definition
of wreach0 we know that δ1=[ ], C1

id−→∗skip and wr ∈ P . Moreover, since for an arbitrary
wr ∈ R we also have wr ∈ P we can conclude that R ⊆ P . On the other hand, as C1

id−→∗skip,
from the control flow transitions we have C1; C2

id−→∗skip; C2
id−→∗C2. As such, from Lemma 11

and wreachk(R, G, δ2, R, C2, ϵ, wq) we have wreachk(R, G, δ2, R, C1; C2, ϵ, wq). That is, as
δ1 ++ δ2=[ ] ++ δ2=δ2, we also have wreachk(R, G, δ1 ++ δ2, R, C1; C2, ϵ, wq). Consequently,
as R ⊆ P , from Lemma 22 we have wreachk(R, G, δ1 ++ δ2, P, C1; C2, ϵ, wq), as required.

Case n=j+1

∀k, R, G, δ1, δ2, P, R, wq, wr, C1, C2, ϵ.

wreachk(R, G, δ2, R, C2, ϵ, wq) ∧ ∀wr ∈ R. wreachj(R, G, δ1, P, C1, ok, wr)
⇒ wreachj+k(R, G, δ1 ++ δ2, P, C1; C2, ϵ, wq)

(I.H)

Pick arbitrary k, R, G, δ1, δ2, P, R, wq, wr, C1, C2, ϵ such that wreachk(R, G, δ2, R, C2, ϵ, wq)
and ∀wr ∈ R. wreachn(R, G, δ1, P, C1, ok, wr).

As ∀wr ∈ R. wreachn(R, G, δ1, P, C1, ok, wr) and dsj(R, G) holds (i.e. dom(R)∩dom(G)=∅),
from the definition of wreachn we then know that for all wr ∈ R, there exist α, δ′

1, p, r, S, C′
1, a

such that either:
1) δ1=[ ], C1

id−→∗skip and wr ∈ P ; or
2) δ1=[α] ++ δ′

1, R(α)=(p, ok, r), rely(p, r, P, S) and wreachj(R, G, δ′
1, S, C1, ok, wr); or

3) δ1=[α] ++ δ′
1, G(α)=(p, ok, r), guar(p, r, P, S, C1, C′

1, a, ok) and wreachj(R, G, δ′
1, S, C′

1, ok,

wr); or
4) δ1=[L] ++ δ′

1, wreachj(R, G, δ′
1, S, C′

1, ok, wr) and C1, P
a
⇝L C′

1, S, ok.
The proof of case (1) is analogous to that of the base case (n=0) and is thus omitted here.
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In case (2), from I.H, wreachj(R, G, δ′
1, S, C1, ok, wr) and wreachk(R, G, δ2, R, C2, ϵ, wq) we

have wreachj+k(R, G, δ′
1 ++ δ2, S, C1; C2, ϵ, wq). Consequently, as δ1 ++ δ2=[α] ++ δ′

1 ++ δ2,
rely(p, r, P, S) and R(α)=(p, ok, r), from the definition of wreach we have wreachn+k(R, G,

δ1 ++ δ2, P, C1; C2, ϵ, wq), as required.
In case (3), from I.H, wreachj(R, G, δ′

1, S, C′
1, ok, wr) and wreachk(R, G, δ2, R, C2, ϵ, wq) we

have wreachj+k(R, G, δ′
1 ++ δ2, S, C′

1; C2, ϵ, wq). Pick an arbitrary ws ∈ S; from guar(p, r, P,

S, C1, C′
1, a, ok) we then know there exists gr ∈ r, gp ∈ p, wp ∈ P and g such that wG

p = gp ◦g,
wG

s = gr ◦ g and C1, wp
a
⇝ C′

1, ws, ok. From C1, wp
a
⇝ C′

1, ws, ok we know C1
id−→∗ a−→ C′

1

and thus from the control flow transitions (Fig. 6) we know C1; C2
id−→∗ a−→ C′

1; C2. As such,
from C1, wp

a
⇝ C′

1, ws, ok we also have C1; C2, wp
a
⇝ C′

1; C2, ws, ok. That is, for an arbitrary
ws ∈ S we found gr ∈ r, gp ∈ p, wp ∈ P and g such that wG

p = gp ◦ g, wG
s = gr ◦ g and

C1; C2, wp
a
⇝ C′

1; C2, ws, ok. Therefore, from the definition of guar we have guar(p, r, P, S,

C1; C2, C′
1; C2, a, ok). Consequently, as δ1 ++ δ2=[α] ++ δ′

1 ++ δ2, G(α)=(p, ok, r), guar(p, r,

P, S, C1; C2, C′
1; C2, a, ok) and wreachj+k(R, G, δ′

1 ++ δ2, S, C′
1; C2, ϵ, wq), from the definition

of wreach we have wreachn+k(R, G, δ1 ++ δ2, P, C1; C2, ϵ, wq), as required.
In case (4), from I.H, wreachj(R, G, δ′

1, S, C′
1, ok, wr) and wreachk(R, G, δ2, R, C2, ϵ, wq)

we have wreachj+k(R, G, δ′
1 ++ δ2, S, C′

1; C2, ϵ, wq). On the other hand, from wreachj(R, G,

δ′
1, S, C′

1, ok, wr) we know S ̸= ∅ and thus from C1, P
a
⇝L C′

1, S, ok, we know C1
id−→∗ a−→ C′

1 and
thus from the control flow transitions (Fig. 6) we know C1; C2

id−→∗ a−→ C′
1; C2. As such, from

C1, P
a
⇝L C′

1, S, ok we also have C1; C2, P
a
⇝L C′

1; C2, S, ok. Consequently, as δ1=[L] ++ δ′
1,

C1; C2, P
a
⇝L C′

1; C2, S, ok and wreachj+k(R, G, δ′
1 ++ δ2, S, C′

1; C2, ϵ, wq), from the definition
of wreach we have wreachn+k(R, G, δ1 ++ δ2, P, C1; C2, ϵ, wq), as required. ◀

▶ Lemma 17. For all k, R, G, δ1, δ2, P, R, wq, wr, C1, C2, ϵ, if reachk(R, G, δ2, R, C2, ϵ, wq) and
∀wr ∈ R. ∃n. reachn(R, G, δ1, P, C1, ok, wr), then ∃m. reachm(R, G, δ1 ++ δ2, P, C1; C2, ϵ, wq).

Proof. Pick arbitrary k, R, G, δ1, δ2, P, R, wq, wr, C1, C2, ϵ such that reachk(R, G, δ2, R, C2, ϵ,

wq) and ∀wr ∈ R. ∃n. reachn(R, G, δ1, P, C1, ok, wr). From reachk(R, G, δ2, R, C2, ϵ, wq) and
Prop. 14 we have wreachk(R, G, δ2, R, C2, ϵ, wq). As such, from Lemma 7 we know R ̸= ∅.

Let us then enumerate the worlds in R as follows: R = w1 · · · wj . From ∀wr ∈
R. ∃n. reachn(R, G, δ1, P, C1, ok, wr) we know there exists n1 · · · nj such that reachn1(R,

G, δ1, P, C1, ok, w1) ∧ · · · ∧ reachnj (R, G, δ1, P, C1, ok, wj). Let n = max(n1, · · · , nj), i.e.
n ≥ n1 ∧ · · · ∧ n ≥ nj Consequently, since R = w1 · · · wj , reachn1(R, G, δ1, P, C1, ok,

w1) ∧ · · · ∧ reachnj (R, G, δ1, P, C1, ok, wj) and n ≥ n1 ∧ · · · ∧ n ≥ nj , from Prop. 14 we
have ∀wr ∈ R. wreachn(R, G, δ1, P, C1, ok, wr). As such, since wreachk(R, G, δ2, R, C2, ϵ, wq)
and ∀wr ∈ R. wreachn(R, G, δ1, P, C1, ok, wr), from Lemma 16 we have wreachn+k(R, G,

δ1 ++ δ2, P, C1; C2, ϵ, wq). Therefore, from Prop. 15 we know there exists m ≤ n+k such that
reachm(R, G, δ1 ++ δ2, P, C1; C2, ϵ, wq), as required. ◀

▶ Definition 18. For all traces, δ1, δ2, if ⌊δ1⌋=⌊δ2⌋, then their parallel composition, δ1 || δ2,
is defined as follows:

δ1 || δ2 ≜


α :: (δ′

1 || δ′
2) if δ1=α :: δ′

1 ∧ δ′
2=α :: δ′

2

L :: (δ′
1 || δ2) if δ1=L :: δ′

1

L :: (δ1 || δ′
2) if δ2=L :: δ′

2

[ ] if δ1=δ2=[ ]

▶ Proposition 19. For all traces, δ1, δ2, if ⌊δ1⌋=⌊δ2⌋, then ⌊δ1 || δ2⌋=⌊δ1⌋=⌊δ2⌋.
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▶ Lemma 20. For all n, k, R1, R2, G1, G2, δ1, δ2, P1, P2, w1, w2, C1, C2, ϵ, if R1 ⊆ G2 ∪ R2,
R2 ⊆ G1 ∪ R1, ⌊δ1⌋=⌊δ2⌋, w1 • w2 is defined, reachn(R1, G1, δ1, P1, C1, ϵ, w1), reachk(R2, G2,

δ2, P2, C2, ϵ, w2), wf(R1, G1), wf(R2, G2) and wf(R1 ∩ R2, G1 ⊎ G2), then there exists i such
that reachi(R1 ∩ R2, G1 ⊎ G2, δ1 || δ2, P1 ∗ P2, C1 || C2, ϵ, w1 • w2).

Proof. By double induction on n and k.

Case n=0, k=0
As we have reach0(R1, G1, δ1, P1, C1, ϵ, w1) and reachk(R2, G2, δ2, P2, C2, ϵ, w2), we then know
that δ1=δ2=[ ], C1

id−→∗skip, C2
id−→∗skip, ϵ=ok, w1 ∈ P1 and w2 ∈ P2, and thus by definition

we have w1 • w2 ∈ P1 ∗ P2. On the other hand, as C1
id−→∗skip and C2

id−→∗skip, from the
control flow transitions we have C1 || C2

id−→∗skip. As such, since ϵ=ok, w1 • w2 ∈ P1 ∗ P2
and δ1 || δ2=[ ], from the definition of reach we have reach0(R1 ∩ R2, G1 ⊎ G2, δ1 || δ2, P1 ∗ P2,

C1 || C2, ϵ, w1 • w2), as required.

Case n=0, k=j+1
From reach0(R1, G1, δ1, P1, C1, ϵ, w1) we know δ1=[ ], C1

id−→∗skip, ϵ=ok and w1 ∈ P1. As such,
since k ̸=0 and ϵ=ok and ⌊δ1⌋=⌊δ2⌋=[ ], from reachk(R2, G2, δ2, P2, C2, ϵ, w2) we know there
exist a, C′, R, δ′ such that δ2=[L] ++ δ′, ⌊δ′⌋=⌊δ1⌋=[ ], C2, P2

a
⇝L C′, R, ok and reachj(R2, G2,

δ′, R, C′, ϵ, w2). From reach0(R1, G1, δ1, P1, C1, ϵ, w1), reachj(R2, G2, δ′, R, C′, ϵ, w2), and the
inductive hypothesis we then know there exists i such that reachi(R1 ∩ R2, G1 ⊎ G2, δ1 || δ′,

P1 ∗R, C1 || C′, ϵ, w1 •w2). On the other hand, from reachj(R, G, δ′, R, C′, ϵ, w2) and Lemma 7
we know R ̸= ∅ and thus from C2, P2

a
⇝L C′, R, ok we know that C2

id−→∗ a−→C′. As such, from
control flow transitions we have C1 || C2

id−→∗ a−→ C1 || C′.
Pick an arbitrary w ∈ P1∗R, l, m ∈ ⌊TwU◦l⌋. We then know there exists w1

p = (lp, g′) ∈ P1
and wr = (lr, g′) ∈ R such that w = (lp ◦ lr, g′) and m ∈ ⌊lp ◦ lr ◦ g′ ◦ l⌋ = ⌊(lr ◦ g′) ◦ lp ◦ l⌋ =
⌊TwrU ◦ lp ◦ l⌋. As such, from the definition of C2, P2

a
⇝L C′, R, ok we know there exists

w2
p ∈ P2, m′ ∈ ⌊Tw2

pU◦ lp ◦ l⌋ such that (m′, m) ∈ JaKok and (w2
p)G=wG

r =g′. Let w′ = w1
p •w2

p;
since w1

p = (lp, g′), we then have ⌊Tw2
pU ◦ lp ◦ l⌋ = ⌊Tw1

p • w2
pU ◦ l⌋ = ⌊Tw′U ◦ l⌋. As such, we

know m′ ∈ ⌊Tw′U ◦ l⌋. Moreover, we have (w′)G=wG=g′. On the other hand, as w1
p ∈ P1,

w2
p ∈ P2 and w′ = w1

p • w2
p, we know w′ ∈ P1 ∗ P2. Consequently, from C1 || C2

id−→∗ a−→ C1 || C′

and the definition of a
⇝L we have C1 || C2, P1 ∗ P2

a
⇝L C1 || C′, P1 ∗ R, ok. Moreover, as

δ2=[L] ++ δ′, by definition we have δ1 || δ2=[L] ++ (δ1 || δ′). As such, since we have
reachi(R1 ∩R2, G1 ⊎G2, δ1 || δ′, P1 ∗R, C1 || C′, ϵ, w1 •w2), C1 || C2, P1 ∗P2

a
⇝L C1 || C′, P1 ∗R, ok

and δ1 || δ2=[L] ++ (δ1 || δ′), from the definition of reach we have reachi+1(R1 ∩ R2, G1 ⊎ G2,

δ1 || δ2, P1 ∗ P2, C1 || C2, ϵ, w1 • w2), as required.

Case n=1, ϵ ∈ ErExit, k=0
This case does not arise as it simultaneously implies that ϵ ∈ ErExit and ϵ = ok which is
not possible.

Case n=1, ϵ ∈ ErExit, k ̸=0
As n=1, dom(G1)∩dom(G2)=∅ (as otherwise G1 ⊎ G2 would not be defined), R1 ⊆ G2 ∪ R2
and R2 ⊆ G1 ∪ R1, we then know that there exist α, p, q, R, a, C′, j, δ′ such that either:

i) k=1, δ1=δ2=[α], R1(α)=R2(α)=(p, ϵ, q), rely(p, r, P1, {w1}) and rely(p, r, P2, {w2}).
ii) k=1, δ1=δ2=[α], R1(α)=G2(α)=(p, ϵ, q), rely(p, r, P1, {w1}) and guar(p, r, P2, {w2}, C2, C′,

a, ϵ).
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iii) k=1, δ1=δ2=[α], G1(α)=R2(α)=(p, ϵ, q), guar(p, r, P1, {w1}, C1, C′, a, ϵ) and rely(p, r, P2,

{w2}).
iv) δ2=[L] ++ δ′, k=j+1 C2, P2

a
⇝L C′, R, ok, reachj(R2, G2, δ′, R, C′, ϵ, w2).

In case (i) we have (R1 ∩ R2)(α)=(p, ϵ, q). As w1 • w2 is defined we know there exist
l1, l2, g′ such that w1=(l1, g′), w2=(l2, g′) and w1 • w2 = (l1 ◦ l2, g′). From rely(p, r, P1, {w1})
we then know there exists gq ∈ q such that wG

1 =gq ◦ − and thus since wG
1 =(w1 ◦ w2)G we

have (w1 ◦ w2)G=gq ◦ −.
Pick an arbitrary gq ∈ q and g such that g′ = gq ◦ g. As such, given the definitions

of w1 and w2, from rely(p, q, P1, {w1}) and rely(p, q, P2, {w2}) we know ∅ ⊂ P ′
1 ⊆ P1 with

P ′
1 =

{
(l1, gp ◦ g) gp ∈p

}
and ∅ ⊂ P ′

2 ⊆ P2 with P ′
2 =

{
(l2, gp ◦ g) gp ∈p

}
. Consequently, we

have P ⊆ P1 ∗ P2 with P =
{

(l1 ◦ l2, gp ◦ g) gp ∈p
}

. We also know that ∅ ⊂ P as otherwise
we arrive at a contradiction as follows. Let us assume P = ∅. As (l1 ◦ l2, gq ◦ g) is a world by
definition we know that gq # l1 ◦ l2 ◦ g and thus since gq ∈ q we know q ∗ {l1 ◦ l2 ◦ g} ̸= ∅.
As such, since R1(α)=(p, ϵ, q) and wf(R1, G1) from the definition of wf(.) we also know
p ∗ {l1 ◦ l2 ◦ g} ̸= ∅. That is, there exists gp ∈ p such that gp # l1 ◦ l2 ◦ g, and thus
(l1 ◦ l2, gp ◦ g) ∈ P , leading to a contradiction since we assumed P = ∅.

Consequently, since we have ∅ ⊂ P =
{

(l, gp ◦ g) gp ∈p
}

⊆ P1 ∗P2 for an arbitrary gq ∈ q

and (l1 ◦ l2, gq ◦ g) = w1 • w2, by definition we have rely(p, q, P1 ∗ P2, {w1 • w2}). Moreover,
since δ1=δ2=[α], by definition we have δ1 || δ2=[α] . As such, since we have δ1 || δ2=[α],
(R1 ∩ R2)(α)=(p, ϵ, q) and rely(p, q, P1 ∗ P2, {w1 • w2}), from the definition of reach we have
reach1(R1 ∩ R2, G1 ⊎ G2, δ1 || δ2, P1 ∗ P2, C1 || C2, ϵ, w1 • w2), as required.

In case (ii) we have (G1 ⊎ G2)(α)=(p, ϵ, q). Let w1=(l1, g), w2=(l2, g) and w=w1 • w2.
We then know w=(l1 ◦ l2, g). From guar(p, q, P2, {w2}, C2, C′, a, ϵ) we then know there exist
gq ∈ q, gp ∈ p, w2

p ∈ P2, g′, l′
2 such that w2

p = (l′
2, gp ◦ g′), g=gq ◦ g′ and C2, w2

p
a
⇝ C′, (l2, g), ϵ.

From C2, w2
p

a
⇝ C′, (l2, g) we know C2

id−→∗ a−→ C′ and thus from the control flow transitions
we also have C1 || C2

id−→ ∗ a−→ C1 || C′. Let w′=(l1 ◦ l′
2, gp ◦ g′). Pick an arbitrary l′ and

m ∈ ⌊TwU◦l′⌋ = ⌊l1◦l2◦g◦l′⌋ = ⌊(l2◦g)◦l1◦l′⌋ = ⌊T(l2, g)U◦l1◦l′⌋. As such, from the definition
of C2, w2

p
a
⇝ C′, (l2, g) we know there exists m′ ∈ ⌊Tw2

pU◦l1◦l′⌋ such that (m′, m) ∈ JaKϵ. That
is, m′ ∈ ⌊l′

2 ◦gp ◦g′ ◦l1 ◦l′⌋ = ⌊l1 ◦l′
2 ◦gp ◦g′ ◦l′⌋ = ⌊Tw′U◦l′⌋. As we have C1 || C2

id−→∗ a−→ C1 || C′

and for an arbitrary l′ and m ∈ ⌊TwU ◦ l′⌋ we showed there exists m′ ∈ ⌊Tw′U ◦ l′⌋ such that
(m′, m) ∈ JaKϵ, from the definition of a

⇝ we have C1 || C2, w′ a
⇝ C1 || C′, w, ϵ. Moreover, since

w1 = (l1, gq ◦ g′), gq ∈ q, gp ∈ p and w′=(l1 ◦ l′
2, gp ◦ g′) is defined, from rely(p, q, P1, {w1}) we

have (l1, gp ◦ g′) ∈ P1. Consequently, since w′=(l1 ◦ l′
2, gp ◦ g′) and w2

p = (l′
2, gp ◦ g′) ∈ P2 we

have w′ ∈ P1 ∗ P2. As such, given w=w1 • w2, since we found w′ ∈ P1 ∗ P2, gp ∈ p, gq ∈ q, g′

such that w′G = gp ◦ g′, wG = gq ◦ g′ and C1 || C2, w′ a
⇝ C1 || C′, w, ϵ, by definition we have

guar(p, q, P1 ∗ P2, {w1 • w2}, C1 || C2, C1 || C′, a, ϵ).
Finally, since δ1=δ2=[α], by definition we have δ1 || δ2=[α]. As such, since we have

δ1 || δ2=[α], (G1 ⊎ G2)(α)=(p, ϵ, q) and guar(p, q, P1 ∗ P2, {w1 • w2}, C1 || C2, C1 || C′, a, ϵ), from
the definition of reach we have reach1(R1 ∩ R2, G1 ⊎ G2, δ1 || δ2, P1 ∗ P2, C1 || C2, ϵ, w1 ◦ w2),
as required.

The proof of case (iii) is analogous to that of case (ii) and is omitted here.

In case (iv) from the definitions of ⌊.⌋, δ2 and since ⌊δ1⌋=⌊δ2⌋ we have ⌊δ1⌋=⌊δ′⌋. Con-
sequently, from reachn(R1, G1, δ1, P1, C1, ϵ, w1), reachj(R2, G2, δ′, R, C′, ϵ, w2), ⌊δ1⌋=⌊δ2⌋ and
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the inductive hypothesis we know there exists i such that reachi(R1 ∩ R2, G1 ⊎ G2, δ1 || δ′,

P1 ∗ R, C1 || C′, ϵ, w1 • w2). From reachj(R2, G2, δ′, R, C′, ϵ, w2) and Lemma 7 we know R ̸= ∅
and thus from C2, P2

a
⇝L C′, R, ok we know that C2

id−→∗ a−→C′. As such, from control flow
transitions we have C1 || C2

id−→∗ a−→ C1 || C′.
Pick an arbitrary w ∈ P1∗R, l, m ∈ ⌊TwU◦l⌋. We then know there exists w1

p = (lp, g′) ∈ P1
and wr = (lr, g′) ∈ R such that w = (lp ◦ lr, g′) and m ∈ ⌊lp ◦ lr ◦ g′ ◦ l⌋ = ⌊(lr ◦ g′) ◦ lp ◦ l⌋ =
⌊TwrU ◦ lp ◦ l⌋. As such, from the definition of C2, P2

a
⇝L C′, R, ok we know there exists

w2
p ∈ P2, m′ ∈ ⌊Tw2

pU◦ lp ◦ l⌋ such that (m′, m) ∈ JaKok and (w2
p)G=wG

r =g′. Let w′ = w1
p •w2

p;
since w1

p = (lp, g′), we then have ⌊Tw2
pU ◦ lp ◦ l⌋ = ⌊Tw1

p • w2
pU ◦ l⌋ = ⌊Tw′U ◦ l⌋. As such, we

know m′ ∈ ⌊Tw′U ◦ l⌋. Moreover, we have (w′)G=wG=g′. On the other hand, as w1
p ∈ P1,

w2
p ∈ P2 and w′ = w1

p • w2
p, we know w′ ∈ P1 ∗ P2. Consequently, from the definition a

⇝L we
have C1 || C2, P1 ∗ P2

a
⇝L C1 || C′, P1 ∗ R, ok.

As δ2=[L] ++ δ′, by definition we have δ1 || δ2=[L] ++ (δ1 || δ′). As such, since δ1 || δ2=[L] ++
(δ1 || δ′), C1 || C2, P1 ∗ P2

a
⇝L C1 || C′, P1 ∗ R, ok and reachi(R1 ∩ R2, G1 ⊎ G2, δ1 || δ′, P1 ∗ R,

C1 || C′, ϵ, w1 • w2), from the definition of reach we have reachi+1(R1 ∩ R2, G1 ⊎ G2, δ1 || δ2,

P1 ∗ P2, C1 || C2, ϵ, w1 • w2), as required.

Case n=j+1, k=0
This case is analogous to that of n=0 and k=j+1 proved above and is thus omitted here.

Case n=j+1, ϵ ∈ ErExit, k=1
This case is analogous to that of n=1, ϵ ∈ ErExit, k ̸=0 proved above and is thus omitted here.

Case n=i+1, k=j+1
As G1 ∩ G2 = ∅, R1 ⊆ G2 ∪ R2, R2 ⊆ G1 ∪ R1 and ⌊δ1⌋=⌊δ2⌋, we know there exist
δ′

1, δ′
2, δ′, α, p, r, R1, R2, a, C′ such that one of the following cases hold:

i) δ1=[α] ++ δ′
1, δ2=[α] ++ δ′

2, ⌊δ′
1⌋=⌊δ′

2⌋, R1(α)=R2(α)=(p, ok, r), rely(p, r, P1, R1), rely(p,

r, P2, R2), reachi(R1, G1, δ′
1, R1, C1, ϵ, w1) and reachj(R2, G2, δ′

2, R2, C2, ϵ, w2)
ii) δ1=[α] ++ δ′

1, δ2=[α] ++ δ′
2, ⌊δ′

1⌋=⌊δ′
2⌋, R1(α)=G2(α)=(p, ok, r), rely(p, r, P1, R1), reachi(R1,

G1, δ′
1, R1, C1, ϵ, w1), guar(p, r, P2, R2, C2, C′, a, ok), reachj(R2, G2, δ′

2, R2, C′, ϵ, w2).
iii) δ1=[α] ++ δ′

1, δ2=[α] ++ δ′
2, ⌊δ′

1⌋=⌊δ′
2⌋, G1(α)=R2(α)=(p, ok, r), guar(p, r, P1, R1, C1, C′,

a, ok), reachi(R1, G1, δ′
1, R1, C′, ϵ, w1), rely(p, r, P2, R2) and reachj(R2, G2, δ′

2, R2, C2, ϵ, w2).
iv) δ2=[L] ++ δ′, ⌊δ1⌋=⌊δ′⌋, C2, P2

a
⇝L C′, R2, ok, reachj(R2, G2, δ′, R2, C′, ϵ, w2).

v) δ1=[L] ++ δ′, ⌊δ′⌋=⌊δ2⌋, C1, P1
a
⇝L C′, R1, ok, reachi(R1, G1, δ′, R1, C′, ϵ, w1).

In case (i) we have (R1∩R2)(α)=(p, ok, r). From reachi(R1, G1, δ′
1, R1, C1, ϵ, w1), reachj(R2,

G2, δ′
2, R2, C2, ϵ, w2), ⌊δ′

1⌋=⌊δ′
2⌋, and the inductive hypothesis we then know there exists m

such that reachm(R1 ∩ R2, G1 ⊎ G2, δ′
1 || δ′

2, R1 ∗ R2, C1 || C2, ϵ, w1 ◦ w2). Pick an arbitrary
w ∈ R1 ∗ R2. We then know there exist w′

1 ∈ R1, w′
2 ∈ R2, l1, l2, g′ such that w′

1=(l1, g′),
w′

2=(l2, g′) and w = (l1 ◦ l2, g′). From rely(p, r, P1, R1) we then know there exists gr ∈ r such
that (w′

1)G=gr ◦ − and thus since (w′
1)G=wG we have wG=gr ◦ −.

Pick an arbitrary gr ∈ r and (l, gr ◦ g) ∈ R1 ∗ R2. We then know there exists l1, l2 such
that l = l1 ◦ l2, (l1, gr ◦ g) ∈ R1 and (l2, gr ◦ g) ∈ R2. As such, from rely(p, r, P1, R1) and
rely(p, r, P2, R2) we know ∅ ⊂ P ′

1 ⊆ P1 with P ′
1 =

{
(l1, gp ◦ g) gp ∈p

}
and ∅ ⊂ P ′

2 ⊆ P2 with
P ′

2 =
{

(l2, gp ◦ g) gp ∈p
}

. Consequently, we have P ⊆ P1 ∗ P2 with P =
{

(l, gp ◦ g) gp ∈p
}

.
We also know that ∅ ⊂ P as otherwise we arrive at a contradiction as follows. Let us assume
P = ∅. As (l, gr ◦ g) is a world by definition we know that gr # l ◦ g and thus since gr ∈ r

we know r ∗ {l ◦ g} ≠ ∅. As such, since R1(α)=(p, ϵ, r) and wf(R1, G1) from the definition of
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wf(.) we also know p ∗ {l ◦ g} ≠ ∅. That is, there exists gp ∈ p such that gp # l ◦ g, and thus
(l, gp ◦ g) ∈ P , leading to a contradiction since we assumed P = ∅.

Consequently, since we have ∅ ⊂ P =
{

(l, gp ◦ g) gp ∈p
}

⊆ P1 ∗ P2 for an arbit-
rary gr ∈ r and (l, gr ◦ g) ∈ R1 ∗ R2, by definition we have rely(p, q, P1 ∗ P2, R1 ∗ R2).
As δ1=[α] ++ δ′

1 and δ2=[α] ++ δ′
2, by definition we have δ1 || δ2=[α] ++ (δ′

1 || δ′
2). As

such, since δ1 || δ2=[α] ++ (δ′
1 || δ′

2), (R1 ∩ R2)(α)=(p, ok, r), rely(p, q, P1 ∗ P2, R1 ∗ R2) and
reachm(R1 ∩ R2, G1 ⊎ G2, δ′

1 || δ′
2, R1 ∗ R2, C1 || C2, ϵ, w1 ◦ w2), from the definition of reach we

have reachm(R1 ∩ R2, G1 ⊎ G2, δ1 || δ2, P1 ∗ P2, C1 || C2, ϵ, w1 ◦ w2), as required.

In case (ii) we have (G1⊎G2)(α)=(p, ok, r). From reachi(R1, G1, δ′
1, R1, C1, ϵ, w1), reachj(R2,

G2, δ′
2, R2, C′, ϵ, w2), ⌊δ′

1⌋=⌊δ′
2⌋, and the inductive hypothesis we then know there exists m

such that reachm(R1 ∩ R2, G1 ⊎ G2, δ′
1 || δ′

2, R1 ∗ R2, C1 || C′, ϵ, w1 ◦ w2).
Pick an arbitrary w=(l, g) ∈ R1 ∗ R2. By definition we know there exists l1, l2 such

that l=l1 ◦ l2, (l1, g) ∈ R1 and (l2, g) ∈ R2. From guar(p, r, P2, R2, C2, C′, a, ok) we then
know there exist gr ∈ r, gp ∈ p, w2

p ∈ P2, g′, l′
2 such that w2

p = (l′
2, gp ◦ g′), g=gr ◦ g′ and

C2, w2
p

a
⇝ C′, (l2, g), ok. From C2, w2

p
a
⇝ C′, (l2, g) we know C2

id−→∗ a−→ C′ and thus from the
control flow transitions we also have C1 || C2

id−→∗ a−→ C1 || C′. Let w′=(l1 ◦ l′
2, gp ◦ g′). Pick an

arbitrary l′ and m ∈ ⌊TwU ◦ l′⌋ = ⌊l1 ◦ l2 ◦ g ◦ l′⌋ = ⌊(l2 ◦ g) ◦ l1 ◦ l′⌋ = ⌊T(l2, g)U ◦ l1 ◦ l′⌋. As
such, from the definition of C2, w2

p
a
⇝ C′, (l2, g), ok we know there exists m′ ∈ ⌊Tw2

pU ◦ l1 ◦ l′⌋
such that (m′, m) ∈ JaKok. That is, m′ ∈ ⌊l′

2 ◦gp ◦g′ ◦ l1 ◦ l′⌋ = ⌊l1 ◦ l′
2 ◦gp ◦g′ ◦ l′⌋ = ⌊Tw′U◦ l′⌋.

As we have C1 || C2
id−→∗ a−→ C1 || C′ and for an arbitrary l′ and m ∈ ⌊TwU ◦ l′⌋ we showed

there exists m′ ∈ ⌊Tw′U ◦ l′⌋ such that (m′, m) ∈ JaKok, from the definition of a
⇝ we

have C1 || C2, w′ a
⇝ C1 || C′, w, ok. Moreover, since (l1, g) = (l1, gr ◦ g′) ∈ R1, gp ∈ p and

w′=(l1 ◦ l′
2, gp ◦ g′) is defined, from rely(p, r, P1, R1) we have (l1, gp ◦ g′) ∈ P1. Consequently,

since w′=(l1 ◦ l′
2, gp ◦ g′) and w2

p = (l′
2, gp ◦ g′) ∈ P2 we have w′ ∈ P1 ∗ P2. As such, since for

an arbitrary w ∈ R1 ∗ R2 we found w′ ∈ P1 ∗ P2, gp ∈ p, gr ∈ r, g′ such that w′G = gp ◦ g′,
wG = gq ◦ g′ and C1 || C2, w′ a

⇝ C1 || C′, w, ok, by definition we have guar(p, q, P1 ∗ P2, R1 ∗ R2,

C1 || C2, C1 || C′, a, ok).
As δ1=[α] ++ δ′

1 and δ2=[α] ++ δ′
2, by definition we have δ1 || δ2=[α] ++ (δ′

1 || δ′
2). As

such, since δ1 || δ2=[α] ++ (δ′
1 || δ′

2), (G1 ⊎G2)(α)=(p, ok, r), guar(p, q, P1 ∗P2, R1 ∗R2, C1 || C2,

C1 || C′, a, ok) and reachm(R1 ∩R2, G1 ⊎G2, δ′
1 || δ′

2, R1 ∗R2, C1 || C′, ϵ, w1 ◦w2), from the defin-
ition of reach we have reachm(R1 ∩R2, G1 ⊎G2, δ1 || δ2, P1 ∗P2, C1 || C2, ϵ, w1 ◦w2), as required.

The proof of case (iii) is analogous to that of case (ii) and is omitted here.

In case (iv) from reach1(R1, G1, δ1, P1, C1, ϵ, w1), reachj(R2, G2, δ′, R2, C′, ϵ, w2), ⌊δ1⌋=⌊δ′⌋
and the inductive hypothesis we know there exists i such that reachi(R1 ∩ R2, G1 ⊎ G2, δ1 || δ′,

P1 ∗ R2, C1 || C′, ϵ, w1 • w2). From reachj(R2, G2, δ′, R2, C′, ϵ, w2) and Lemma 7 we know
R2 ̸= ∅, thus from C2, P2

a
⇝L C′, R2, ok we know C2

id−→∗ a−→C′. As such, from control flow
transitions we have C1 || C2

id−→∗ a−→ C1 || C′.
Pick an arbitrary w ∈ P1 ∗ R2, l, m ∈ ⌊TwU ◦ l⌋. We then know there exists w1

p =
(lp, g′) ∈ P1 and wr = (lr, g′) ∈ R2 such that w = (lp ◦ lr, g′) and m ∈ ⌊lp ◦ lr ◦ g′ ◦ l⌋ =
⌊(lr ◦g′)◦ lp ◦ l⌋ = ⌊TwrU◦ lp ◦ l⌋. As such, from the definition of C2, P2

a
⇝L C′, R2, ok we know

there exists w2
p ∈ P2, m′ ∈ ⌊Tw2

pU ◦ lp ◦ l⌋ such that (m′, m) ∈ JaKok and (w2
p)G=wG

r =g′. Let
w′ = w1

p • w2
p; since w1

p = (lp, g′), we then have ⌊Tw2
pU ◦ lp ◦ l⌋ = ⌊Tw1

p • w2
pU ◦ l⌋ = ⌊Tw′U ◦ l⌋.

As such, we know m′ ∈ ⌊Tw′U ◦ l⌋. Moreover, we have (w′)G=wG=g′. On the other hand,
as w1

p ∈ P1, w2
p ∈ P2 and w′ = w1

p • w2
p, we know w′ ∈ P1 ∗ P2. Consequently, from the
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definition a
⇝L we have C1 || C2, P1 ∗ P2

a
⇝L C1 || C′, P1 ∗ R2, ok.

As δ2=[L] ++ δ′, by definition we have δ1 || δ2=[L] ++ (δ1 || δ′). As such, since δ1 || δ2=[L] ++
(δ1 || δ′), C1 || C2, P1 ∗ P2

a
⇝L C1 || C′, P1 ∗ R2, ok and reachi(R1 ∩ R2, G1 ⊎ G2, δ1 || δ′, P1 ∗ R2,

C1 || C′, ϵ, w1 • w2), from the definition of reach we have reachi+1(R1 ∩ R2, G1 ⊎ G2, δ1 || δ2,

P1 ∗ P2, C1 || C2, ϵ, w1 • w2), as required.

The proof of case (v) is analogous to that of case (iv) and is omitted here. ◀

▶ Lemma 21. For all n, R, G, δ, P, wq, C, ϵ, R, w, if wf(R, G), stable(R, R ∪ G), reachn(R, G,

δ, P, C, ϵ, wq) and w ∈ {wq} ∗ R, then reachn(R, G, δ, P ∗ R, C, ϵ, w).

Proof. By induction on n.

Case n=0
Pick arbitrary R, G, δ, P, R, wq, w, C, ϵ such that wf(R, G), stable(R, R ∪ G), reach0(R, G, δ,

P, C, ϵ, wq) and w ∈ {wq}∗R. From the definition of reach0(R, G, δ, P, C, ϵ, wq) we know δ=[ ],
ϵ=ok, C id−→∗skip and wq ∈ P . As such, since w ∈ {wq} ∗ R and wq ∈ P , we have w ∈ P ∗ R.
Consequently, as δ=[ ], ϵ=ok, C id−→∗skip and w ∈ P ∗ R, from the definition of reach0 we have
reach0(R, G, δ, P ∗ R, C, ϵ, w), as required.

Case n=1, ϵ ∈ ErExit
Pick arbitrary R, G, δ, P, R, wq, w, C, ϵ such that wf(R, G), stable(R, R ∪ G), reachn(R, G, δ,

P, C, ϵ, wq) and w ∈ {wq} ∗ R. As w ∈ {wq} ∗ R, we know there exists lq, g, lr such that
wq=(lq, g), (lr, g) ∈ R and w=(lq ◦ lr, g). From reachn(R, G, δ, P, C, ϵ, wq) we know that there
exists α, p, q, a, C′ such that either:
1) δ = [α], R(α) = (p, ϵ, q), rely(p, q, P, {wq}); or
2) δ = [α], G(α)=(p, ϵ, q), guar(p, q, P, {wq}, C, C′, a, ϵ).

In case (1), from the definition of rely we know there exists gq ∈ q such that g=gq ◦ −.
That is, ∃gq ∈ q. wG=gq ◦ −.

Pick an arbitrary gq ∈ q, g′ such that g=gq ◦ g′. From rely(p, q, P, {wq}) and since
wq=(lq, g), we know ∅ ⊂

{
(lq, gp ◦ g′) gp ∈ p

}
⊆ P . As R(α) = (p, ϵ, q), wr=(lr, g), g=gq ◦g′,

from stable(R, R ∪ G) we know
{

(lr, gp ◦ g′) gp ∈ p
}

⊆ R. Since
{

(lq, gp ◦ g′) gp ∈ p
}

⊆ P

and
{

(lr, gp ◦ g′) gp ∈ p
}

⊆ R, we also have S=
{

(lq ◦ lr, gp ◦ g′) gp ∈ p
}

⊆ P ∗ R. We also
know that ∅ ⊂ S as otherwise we arrive at a contradiction as follows. Let us assume S = ∅.
As w=(lq ◦ lr, gq ◦ g′) is a world, by definition we know that gq # lq ◦ lr ◦ g′ and thus since
gq ∈ q we know q ∗ {lq ◦ lr ◦ g′} ≠ ∅. As such, since R(α)=(p, ϵ, q) and wf(R, G) from the
definition of wf(.) we also know p ∗ {lq ◦ lr ◦ g′} ≠ ∅. That is, there exists gp ∈ p such that
gp # lq ◦ lr ◦ g′, and thus (lq ◦ lr, gp ◦ g′) ∈ S, leading to a contradiction since we assumed
S = ∅.

Consequently, since ∃gq ∈ q. wG=gq ◦ −, and for an arbitrary gq ∈ q, g′ with g=gq ◦ g we
showed ∅ ⊂ S =

{
(lq ◦ lr, gp ◦ g′) gp ∈p

}
⊆ P ∗ R and since (lq ◦ lr, gq ◦ g′) = w, by definition

we have rely(p, q, P ∗ R, {w}).
As such, since we have δ=[α], (R)(α)=(p, ϵ, q) and rely(p, q, P ∗ R, {w}), from the defini-

tion of reach we have reach1(R, G, δ, P ∗ R, C, ϵ, w), as required.

In case (2), from guar(p, q, P, {wq}, C, C′, a, ϵ) and since wq=(lq, g), we know C id−→∗ a−→ C′

and that there exist gq ∈ q, gp ∈ p, wp ∈ P , g′, lp such that wp = (lp, gp ◦ g′), g=gq ◦ g′ and
C, wp

a
⇝ C′, wq, ϵ. Let w′=(lp ◦ lr, gp ◦g′). As G(α)=(p, ϵ, q), wr=(lr, g) ∈ R, g=gq ◦g′, gp ∈ p
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and gq ∈ q, from stable(R, R ∪ G) we know (lr, gp◦g′) ∈ R. As such, since wp = (lp, gp◦g′) ∈ P

and (lr, gp ◦ g′) ∈ R, we also have w′=(lp ◦ lr, gp ◦ g′) ∈ P ∗ R.
Pick an arbitrary l′ and m ∈ ⌊TwU ◦ l′⌋ = ⌊lq ◦ lr ◦ g ◦ l′⌋ = ⌊(lq ◦ g) ◦ lr ◦ l′⌋ =

⌊T(lq, g)U ◦ lr ◦ l′⌋ = ⌊TwqU ◦ lr ◦ l′⌋. As such, from the definition of C, wp
a
⇝ C′, wq we know

there exists m′ ∈ ⌊TwpU◦ lr ◦ l′⌋ such that (m′, m) ∈ JaKϵ. That is, m′ ∈ ⌊lp ◦gp ◦g′ ◦ lr ◦ l′⌋ =
⌊lp ◦ lr ◦ gp ◦ g′ ◦ l′⌋ = ⌊Tw′U ◦ l′⌋. As such, since C id−→∗ a−→ C′ and for an arbitrary l′ and
m ∈ ⌊TwU ◦ l′⌋ we showed there exists m′ ∈ ⌊Tw′U ◦ l′⌋ such that (m′, m) ∈ JaKϵ, from the
definition of a

⇝ we have C, w′ a
⇝ C, w, ϵ. As such, since we found w′ ∈ P ∗ R, gp ∈ p, gq ∈ q, g′

such that w′G = gp ◦ g′, wG = gq ◦ g′ and C, w′ a
⇝ C, w, ϵ, by definition we have guar(p, q,

P ∗ R, {w}, C, C′, a, ϵ).
Finally, since δ=[α], (G)(α)=(p, ϵ, q) and guar(p, q, P ∗ R, {w}, C, C′, a, ϵ), from the defini-

tion of reach we have reach1(R, G, δ, P ∗ R, C, ϵ, w), as required.

Case n=j+1

∀k, R, G, δ, P, wq, C, ϵ, R, w.

wf(R, G) ∧ stable(R, R ∪ G) ∧ reachk(R, G, δ, P, C, ϵ, wq) ∧ w ∈ R ∗ {wq}
⇒ reachk(R, G, δ, P ∗ R, C, ϵ, w)

(I.H)

Pick arbitrary R, G, δ, P, wq, C, ϵ, R, w such that wf(R, G), stable(R, R ∪ G), reachn(R, G, δ,

P, C, ϵ, wq) and w ∈ R ∗ {wq}. As w ∈ {wq} ∗ R, we know there exists lq, g, lr such that
wq=(lq, g), (lr, g) ∈ R and w=(lq ◦ lr, g). From reachn(R, G, δ, P, C, ϵ, wq) we know that there
exists α, δ′, p, r, S, a, C′ such that either:
1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P, S) and reachj(R, G, δ′, S, C, ok, wq); or
2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P, S, C, C′, a, ok) and reachj(R, G, δ′, S, C′, ok, wq);
or
3) δ=[L] ++ δ′, reachj(R, G, δ′, S, C′, ok, wq) and C, P

a
⇝L C′, S, ok.

In case (1), from I.H and reachj(R, G, δ′, S, C, ok, wq) we have reachj(R, G, δ′, S ∗ R, C, ϵ,

w). Pick an arbitrary w′ ∈ S ∗ R. We then know there exists ws ∈ S and wr ∈ R, ls, lr, gm

such that ws=(ls, gm), wr=(lr, gm) and w′=(ls ◦ lr, gm). From rely(p, r, P, S) we then know
there exists gr ∈ r such that (ws)G=gr ◦ − and thus since (ws)G=w′G we have w′G=gr ◦ −.
That is, for an arbitrary w′ ∈ S ∗ R we have ∃gr ∈ r. w′G=gr ◦ −.

Pick an arbitrary gr ∈ r and (l, gr ◦ g′) ∈ S ∗ R. We then know there exists ls, lr such
that l = ls ◦ lr, (ls, gr ◦ g′) ∈ S and (lr, gr ◦ g′) ∈ R. As such, from rely(p, r, P, S) we know
∅ ⊂

{
(ls, gp ◦ g′) gp ∈p

}
⊆ P . As R(α) = (p, ϵ, r), (lr, g) ∈ R, g=gr ◦ g′ and gr ∈ r, from

stable(R, R ∪ G) we know
{

(lr, gp ◦ g′) gp ∈ p
}

⊆ R. Since
{

(ls, gp ◦ g′) gp ∈p
}

⊆ P and{
(lr, gp ◦ g′) gp ∈ p

}
⊆ R, we also have A=

{
(ls ◦ lr, gp ◦ g′) gp ∈ p

}
⊆ P ∗ R.

We also know that ∅ ⊂ A as otherwise we arrive at a contradiction as follows. Let
us assume A = ∅. As (l, gr ◦ g′) = (ls ◦ lr, gr ◦ g′) is a world by definition we know that
gr # ls ◦ lr ◦g′ and thus since gr ∈ r we know r∗{ls ◦ lr ◦g′} ≠ ∅. As such, since R(α)=(p, ϵ, r)
and wf(R1, G1) from the definition of wf(.) we also know p ∗ {ls ◦ lr ◦ g′} ≠ ∅. That is, there
exists gp ∈ p such that gp # ls ◦ lr ◦g′, and thus (ls ◦ lr, gp ◦g′) ∈ A, leading to a contradiction
since we assumed A = ∅.

Consequently, since for an arbitrary w′ ∈ S ∗ R we have ∃gr ∈ r. w′G=gr ◦ − and for
arbitrary gr ∈ r and (l, gr ◦ g′) ∈ S ∗ R we have ∅ ⊂ A =

{
(ls ◦ lr, gp ◦ g) gp ∈p

}
⊆ P ∗ R, by

definition we have rely(p, q, P ∗R, S∗R). As such, since we have δ=[α] ++ δ′, (R)(α)=(p, ok, r),
rely(p, q, P ∗ R, S ∗ R) and reachj(R, G, δ′, S ∗ R, C, ϵ, w), from the definition of reach we have
reachn(R, G, δ, P ∗ R, C, ϵ, w), as required.
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In case (2), from I.H and reachj(R, G, δ′, S, C, ok, wq) we have reachj(R, G, δ′, S ∗ R, C, ϵ,

w).
Pick an arbitrary w′=(l, gm) ∈ S ∗ R. By definition we know there exists ls, lr such

that l=ls ◦ lr, (ls, gm) ∈ S and (lr, gm) ∈ R. From guar(p, r, P, S, C, C′, a, ok) we then know
there exist gr ∈ r, gp ∈ p, wp ∈ P , g′, lp such that wp = (lp, gp ◦ g′), gm=gr ◦ g′ and
C, wp

a
⇝ C′, (ls, gm), ok. Let w′′=(lp ◦ lr, gp ◦ g′). Pick an arbitrary l′ and m ∈ ⌊Tw′U ◦ l′⌋ =

⌊ls ◦ lr ◦ gm ◦ l′⌋ = ⌊(ls ◦ gm) ◦ lr ◦ l′⌋ = ⌊T(ls, gm)U ◦ l1 ◦ l′⌋. As such, from the definition
of C, wp

a
⇝ C′, (ls, gm) we know there exists m′ ∈ ⌊TwpU ◦ lr ◦ l′⌋ such that (m′, m) ∈ JaKok.

That is, m′ ∈ ⌊lp ◦ gp ◦ g′ ◦ lr ◦ l′⌋ = ⌊lp ◦ lr ◦ gp ◦ g′ ◦ l′⌋ = ⌊Tw′′U ◦ l′⌋. As we have C id−→∗ a−→ C′

and for an arbitrary l′ and m ∈ ⌊Tw′U ◦ l′⌋ we showed there exists m′ ∈ ⌊Tw′′U ◦ l′⌋ such
that (m′, m) ∈ JaKok, from the definition of a

⇝ we have C, w′′ a
⇝ C′, w′, ok. Moreover, since

(lr, gm) = (lr, gr ◦ g′) ∈ R, G(α)=(p, ok, r), gr ∈ r and gp ∈ p, from stable(P, R ∪ G) we know
(lr, gp ◦ g′) ∈ R. As such, since wp = (lp, gp ◦ g′) ∈ P , (lr, gp ◦ g′) ∈ R and w′′=(lp ◦ lr, gp ◦ g′),
we have w′′ ∈ P ∗ R. As such, since for an arbitrary w′ ∈ S ∗ R we found w′′ ∈ P ∗ R,
gp ∈ p, gr ∈ r, g′ such that w′′G = gp ◦ g′, w′G = gq ◦ g′ and C, w′′ a

⇝ C′, w′, ok, by definition
we have guar(p, q, P ∗ R, S ∗ R, C, C′, a, ok).

Finally, since δ=[α] ++ δ′, (G)(α)=(p, ok, r), guar(p, q, P ∗ R, S ∗ R, C, C′, a, ok) and
reachj(R, G, δ′, S ∗ R, C′, ϵ, w), from the definition of reach we have reachn(R, G, δ, P ∗ R, C, ϵ,

w), as required.

In case (3), from reachj(R, G, δ′, S, C′, ϵ, wq) and I.H we know reachn(R, G, δ′, S ∗ R, C′,

ϵ, w). From reachj(R, G, δ′, S, C′, ϵ, wq) and Lemma 7 we know S ̸= ∅, thus from C, P
a
⇝L

C′, S, ok we know C id−→∗ a−→C′.
Pick an arbitrary w′ ∈ S∗R, l, m ∈ ⌊Tw′U◦l⌋. We then know there exists ws = (ls, g′) ∈ S

and wr = (lr, g′) ∈ R such that w′ = (ls ◦ lr, g′) and m ∈ ⌊ls ◦ lr ◦ g′ ◦ l⌋ = ⌊(ls ◦ g′) ◦ lr ◦ l⌋ =
⌊TwsU ◦ lr ◦ l⌋. As such, from the definition of C, P

a
⇝L C′, S, ok we know there exists wp ∈ P ,

m′ ∈ ⌊TwpU ◦ lr ◦ l⌋ such that (m′, m) ∈ JaKok and (wp)G=wG
s =g′. Let wp = (lp, g′) and

w′′ = wp • wr = (lp ◦ lr, g′). We then have ⌊TwpU ◦ lr ◦ l⌋ = ⌊lp ◦ g′ ◦ lr ◦ l⌋ = ⌊lp ◦ lr ◦ g′ ◦ l⌋ =
⌊Twp • wrU ◦ l⌋ = ⌊Tw′′U ◦ l⌋. As such, we know m′ ∈ ⌊Tw′′U ◦ l⌋. Moreover, we have
(w′′)G=w′G=g′. On the other hand, as wp ∈ P , wr ∈ R and w′′ = wp • wr, we know
w′′ ∈ P ∗ R. Consequently, from the definition a

⇝L we have C, P ∗ R
a
⇝L C′, S ∗ R, ok. As

such, since we also have reachj(R, G, δ′, S ∗ R, C′, ϵ, w) and δ=[L] ++ δ′, from the definition
of reach we have reachn(R, G, δ, P ∗ R, C, ϵ, w), as required. ◀

▶ Lemma 22. For all n, R, R′, G, G′, δ, P, P ′, wq, C, ϵ, if R′ ≼⌊δ⌋ R, G′ ≼⌊δ⌋ G, P ′ ⊆ P and
reachn(R′, G′, δ, P ′, C, ϵ, wq), then reachn(R, G, δ, P, C, ϵ, wq).

Proof. By induction on n.

Case n=0
Pick arbitrary R, R′, G, G′, δ, P, P ′, wq, C, ϵ such that R′ ≼⌊δ⌋ R, G′ ≼⌊δ⌋ G, P ′ ⊆ P and
reach0(R′, G′, δ, P ′, C, ϵ, wq). As we have reach0(R′, G′, δ, P ′, C, ϵ, wq), we then know that
δ=[ ], C id−→∗skip, ϵ=ok and wq ∈ P ′, and thus (as P ′ ⊆ P ) wq ∈ P . Consequently, from the
definition of reach we have reach0(R, G, δ, P, skip, ϵ, wq), as required.

Case n=1, ϵ ∈ ErExit
Pick arbitrary R, R′, G, G′, δ, P, P ′, wq, C, ϵ such that R′ ≼⌊δ⌋ R, G′ ≼⌊δ⌋ G, P ′ ⊆ P and
reach1(R′, G′, δ, P ′, C, ϵ, wq). Let wq = (l, g). From reach1(R′, G′, δ, P ′, C, ϵ, wq) we then know
that there exist α, p, q, f, a, C′ such that ϵ ∈ ErExit and either:
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1) δ = [α], R′(α) = (p, ϵ, q) and rely(p, q, P ′, {wq}); or
2) δ = [α], G′(α)=(p, ϵ, q) and guar(p, q, P ′, {wq}, C, C′, a, ϵ).

In case (1) since α ∈ dom(R′) and α ∈ δ (and thus α ∈ ⌊δ⌋), from R′ ≼⌊δ⌋ R we also
have R(α)=(p, ϵ, q). As wq = (l, g), from rely(p, q, P ′, {wq}) we know there exists gq ∈ q such
that g=gq ◦ −. Similarly, from rely(p, q, P ′, {wq}) we know that for all gq ∈ q, there exists g′

such that g=gq ◦ g′ and ∅ ⊂
{

(l, gp ◦ g′) gp ∈ p
}

⊆ P ′. As such, since P ′ ⊆ P , we also have
∅ ⊂

{
(l, gp ◦ g′) gp ∈ p

}
⊆ P . Consequently, from the definition of rely we have rely(p, q, P,

{wq}). As such, since ϵ ∈ ErExit, δ = [α], R(α)=(p, ϵ, q) and rely(p, q, P, {wq}), from the
definition of reach we have reach1(R, G, δ, P, C, ϵ, wq), as required.

In case (2) since α ∈ dom(G′) and α ∈ δ (and thus α ∈ ⌊δ⌋), from G′ ≼⌊δ⌋ G we also have
G(α)=(p, ϵ, q). Moreover, from guar(p, q, P ′, {wq}, C, C′, a, ϵ) we know there exists gq ∈ q,
gp ∈ p, wp ∈ P ′ and g such that wG

p =gp ◦ g, wG
q =gq ◦ g and C, wp

a
⇝ C′, wq, ϵ. Consequently,

since P ′ ⊆ P and wp ∈ P ′, we also have wp ∈ P . As such, from the definition of guar we
have guar(p, q, P, {wq}, C, C′, a, ϵ). Therefore, since ϵ ∈ ErExit, δ = [α], G(α)=(p, ϵ, q) and
guar(p, q, P, {wq}, C, C′, a, ϵ), from the definition of reach we have reach1(R, G, δ, P, C, ϵ, wq),
as required.

Case n=k+1
Pick arbitrary R, R′, G, G′, δ, P, P ′, wq, C, ϵ such that R′ ≼δ R, G′ ≼δ G, P ′ ⊆ P and
reachn(R′, G′, δ, P ′, C, ϵ, wq). Let wq = (l, g). From reachn(R′, G′, δ, P ′, C, ϵ, wq) we then
know that there exist α, δ′, p, r, a, C′, a, R such that either:
1) δ=[α] ++ δ′, R′(α)=(p, ok, r), rely(p, r, P ′, R) and reachk(R′, G′, δ′, R, C, ϵ, wq); or
2) δ=[α] ++ δ′, G′(α)=(p, ok, r), guar(p, r, P ′, R, C, C′, a, ok) and reachk(R′, G′, δ′, R, C′, ϵ, wq).
3) δ=[L] ++ δ′, reachk(R′, G′, δ′, R, C′, ϵ, wq) and C, P ′ a

⇝L C′, R, ok.
In case (1) since α ∈ dom(R′) and α ∈ δ (and thus α ∈ ⌊δ⌋), from R′ ≼⌊δ⌋ R we also

have R(α)=(p, ok, r). Pick an arbitrary wr ∈ R. From rely(p, q, P ′, R) we know there exists
gr ∈ r such that wG

r =gr ◦ −. Similarly, from rely(p, q, P ′, R) we know that for all gr ∈ r and
all (l, gr ◦ g) ∈ R we have ∅ ⊂

{
(l, gp ◦ g′) gp ∈ p

}
⊆ P ′. As such, since P ′ ⊆ P , we also

have ∅ ⊂
{

(l, gp ◦ g′) gp ∈ p
}

⊆ P . Consequently, from the definition of rely we have rely(p,

q, P, R). On the other hand, from reachk(R′, G′, δ′, R, C, ϵ, wq) and the inductive hypothesis
we have reachk(R, G, δ′, R, C, ϵ, wq). Consequently, as δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r,

P, R) and reachk(R, G, δ′, R, C, ϵ, wq), from the definition of reach we have reachn(R, G, δ, P,

C, ϵ, wq), as required.
In case (2) since α ∈ dom(G′) and α ∈ δ (and thus α ∈ ⌊δ⌋), from G′ ≼⌊δ⌋ G we also have

G(α)=(p, ok, r). Pick an arbitrary wr ∈ R. From guar(p, r, P ′, R, C, C′, a, ok) we know there
exists gr ∈ r, gp ∈ p, wp ∈ P ′ and g such that wG

p =gp ◦ g, wG
r =gq ◦ g and C, wp

a
⇝ C′, wr, ok.

Consequently, since P ′ ⊆ P and wp ∈ P ′, we also have wp ∈ P . As such, from the definition
of guar we have guar(p, q, P, R, C, C′, a, ok). On the other hand, from reachk(R′, G′, δ′, R,

C′, ϵ, wq) and the inductive hypothesis we have reachk(R, G, δ′, R, C, ϵ, wq). Therefore, as
δ=[α] ++ δ′, G(α)=(p, ϵ, q), guar(p, q, P, R, C, C′, a, ok) and reachk(R, G, δ′, R, C, ϵ, wq), from
the definition of reach we have reachn(R, G, δ, P, C, ϵ, wq), as required.

In case (3), from reachk(R′, G′, δ′, R, C′, ϵ, wq) and the inductive hypothesis we have
reachk(R, G, δ′, R, C′, ϵ, wq). Pick an arbitrary wr ∈ R; from C, P ′ a

⇝L C′, R, ok we then
know there exists wp ∈ P ′ such that C, wp

a
⇝L C′, wr, ok. Since wp ∈ P ′ and P ′ ⊆ P , we

also have wp ∈ P . Therefore, from the definition of a
⇝L we have C, P

a
⇝L C′, R, ok. As such,

since C, P
a
⇝L C′, R, ok, δ=[L] ++ δ′ and reachk(R, G, δ′, R, C′, ϵ, wq), from the definition of

reach we have reachn(R, G, δ, P, C, ϵ, wq), as required. ◀
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▶ Theorem 23 (CASL soundness). For all R, G, δ, p, C, ϵ, q, if R, G, δ ⊢ [p] C [ϵ :q] is derivable
using EndSkip, SkipEnv and the rules in Fig. 3, then R, G, δ |=[p] C [ϵ :q] holds.

Proof. We proceed by induction on the structure of CASL triples.

Case EndSkip
Pick arbitrary R, G, Θ, P, C, Q such that R, G, Θ ⊢ [P ] C [ϵ :Q]. Pick arbitrary θ ∈ Θ. From
R, G, Θ ⊢ [P ] C [ϵ :Q] and the inductive hypothesis we know there exists δ such that ⌊δ⌋=θ

and ∀w ∈ Q. ∃n. reachn(R, G, δ, P, C, ϵ, w).
Pick an arbitrary w ∈ Q; as ⌊δ⌋=θ, it then suffices to show that ∃n. reachn(R, G, δ, P,

C; skip, ϵ, w). From ∀w ∈ Q. ∃n. reachn(R, G, δ, P, C, ϵ, w) and w ∈ Q we know there exists n

such that reachn(R, G, δ, P, C, ϵ, w). Consequently, since skip id−→∗skip, from reachn(R, G, δ, P,

C, ϵ, w) and Lemma 12 we also have reachn(R, G, δ, P, C; skip, ϵ, w), as required.

Case SkipEnv
Pick arbitrary R, G, p, q, r, α, ϵ such that R(α) = (p, ϵ, q) and wf(R, G). It suffices to show
that for all w ∈ q ∗ f , we have reach1(R, G, [α], p ∗ f , skip, ϵ, w).

Pick an arbitrary w ∈ q ∗ f . We then know there exists lq ∈ q, lf ∈ f, l ∈ State0 such
that w=(l, lq ◦lf ). Pick an arbitrary gq ∈ q, g such that w=(l, gq ◦g). As w ∈ q ∗ f and gq ∈ q,
we then know g ∈ f . As such, since gq ∈ q, g ∈ f , we also have A=

{
(l, gp ◦ g) gp ∈ p

}
⊆

p ∗ f . We also know ∅ ⊂ A, as otherwise we would arrive at a contradiction as follows. As
w=(l, gq ◦ g) is a world, we know that gq # l ◦ g; i.e. as gq ∈ q, we have q ∗ {l ◦ g} ≠ ∅. As
such, from wf(R, G) and since R(α)=(p, ϵ, q) we know p ∗ {l ◦ g} ̸= ∅. That is, there exists
lp ∈ p such that lp # l ◦ g, and thus (l, lp ◦ g) ∈ A, arriving at a contradiction since we
assumed A=∅.

As such, since w=(l, lq ◦ lf ) with lq ∈ q, and for arbitrary gq ∈ q, g such that w=(l, gq ◦ g)
we have ∅ ⊂

{
(l, gp ◦ g) gp ∈ p

}
⊆ p ∗ f , from the definition of rely we have rely(p, q, p ∗ f ,

{w}).
There are now two cases to consider: i) ϵ ∈ ErExit; or ii) ϵ=ok. In case (i), since

R(α)=(p, ϵ, q) and rely(p, q, p ∗ f , {w}), from the definition of reach we have reach1(R, G,

[α], p ∗ f , skip, ϵ, w), as required. In case (ii), from Corollary 6 we have reach0(R, G, [ ], {w},

skip, ok, w). As such, since R(α)=(p, ϵ, q), rely(p, q, p ∗ f , {w}) and reach0(R, G, [ ], {w},

skip, ok, w), from the definition of reach we have reach1(R, G, [α] ++ [ ], p ∗ f , skip, ok, w), i.e.
reach1(R, G, [α], p ∗ f , skip, ok, w), as required.

Case Skip
Pick arbitrary R, G, P such that R, G, Θ0 ⊢

[
P

]
skip

[
ok : P

]
. It then suffices to show

that reach0(R, G, [ ], P, skip, ok, w) for an arbitrary w ∈ P , which follows immediately from
Corollary 6.

Case SeqEr
Pick arbitrary R, G, Θ, P, Q, C1, C2, ϵ such that (1) ϵ∈ErExit and (2) R, G, Θ ⊢ [P ] C1
[er : Q]. Pick an arbitrary θ ∈ Θ. From (2) and the inductive hypothesis we then know
there exists δ such that (3) ⌊δ⌋=θ and (4) ∀w ∈ Q. ∃n. reachn(R, G, δ, P, C1, ϵ, w). Pick
an arbitrary w ∈ Q; from (3) it then suffices to show there exists n∈N such that reachn(R,

G, δ, P, C1; C2, ϵ, w). As w ∈ Q, from (4) we know there exists n such that (5) reachn(R, G,

δ, P, C1, ϵ, w). Consequently, from (1), (5) and Lemma 8 we have reachn(R, G, δ, P, C1; C2,

ϵ, w), as required.
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Case EnvEr
Pick arbitrary R, G, α, p, q, f, C, ϵ such that (1) ϵ∈ErExit and (2) R(α)=(p, ϵ, q). Pick
an arbitrary (3) w ∈ q ∗ f . It then suffices to show there exists n such that reach1(R, G,

[α], p ∗ f , C, ϵ, w).
From (3) we know there is lq ∈ q, lf ∈ f, l0 ∈ State0 such that w=(l0, lq ◦ lf ). That is,
(4) ∃lq ∈ q. wG = lq ◦ −. Pick an arbitrary lq ∈ q, g such that w=(l0, lq ◦ g). From
(3) we know g ∈ f . Consequently, since l0 ∈ State0 and g ∈ f , by definition we have
(5) A=

{
(l0, lp ◦ g) lp ∈ p

}
⊆ p ∗ f . We also know that (6) ∅ ⊂ A , as otherwise we arrive

at a contradiction as follows. As w=(l0, lq ◦ g) is a world, we know that lq # l0 ◦ g; i.e. as
lq ∈ q, we have q ∗ {l0 ◦ g} ≠ ∅. As such, as all rely/guarantee relations in proof rule contexts
are well-formed, i.e. wf(R, G) holds, and since q ∗ {l0 ◦ g} ≠ ∅, from wf(R, G) we know
p ∗ {l0 ◦ g} ≠ ∅. That is, there exists lp ∈ p such that lp # l0 ◦ g, and thus (l0, lp ◦ g) ∈ A,
arriving at a contradiction since we assumed A=∅. Consequently, from (4), (5), (6) and
the definition of rely we have (7) rely(p, q, p ∗ f , {w}). As such, from (1), (2), (7) and the
definition of reach we have reach1(R, G, [α], p ∗ f , C, ϵ, w), as required.

Case ParEr
Pick arbitrary R, G, Θ, P, Q, C1, C2, ϵ such that (1) ϵ∈ErExit, (2) R, G, Θ ⊢ [P ] Ci [er : Q]
for some i ∈ {1, 2}. and (3) Θ ⊑ dom(G). Pick an arbitrary θ ∈ Θ. From (2) and the
inductive hypothesis we then know there exists i ∈ {1, 2} and δ such that (4) ⌊δ⌋=θ and
(5) ∀w ∈ Q. ∃n. reachn(R, G, δ, P, Ci, ϵ, w). Pick an arbitrary w ∈ Q; from (4) it then
suffices to show there exists n∈N such that reachn(R, G, δ, P, C1 || C2, ϵ, w). As w ∈ Q, from
(5) we know there exists n such that (6) reachn(R, G, δ, P, Ci, ϵ, w). Consequently, from
(1), (3), (6), Lemma 9 and Lemma 10 we have reachn(R, G, δ, P, C1 || C2, ϵ, w), as required.

Case Seq
Pick arbitrary R, G, Θ1, Θ2, P, Q, R, C1, C2, ϵ such that (1) R, G, Θ1 ⊢

[
P

]
C1

[
ok : R

]
and

(2) R, G, Θ2 ⊢ [R] C2 [ϵ :Q]. Pick an arbitrary θ ∈ Θ1 ++ Θ2. We then know
there exists θ1, θ2 such that (3) θ1 ∈ Θ1, θ2 ∈ Θ2 and θ=θ1 ++ θ2. From (2), (3)
and the inductive hypothesis we then know there exists δ2 such that (4) ⌊δ2⌋=θ2 and
(5) ∀w ∈ Q. ∃n. reachn(R, G, δ2, R, C2, ϵ, w). Similarly, from (1), (3) and the inductive
hypothesis we know there exists δ1 such that (6) ⌊δ1⌋=θ1 and (7) ∀wr ∈ R. ∃i. reachi(R,

G, δ1, P, C1, ok, wr). Let (8) δ=δ1 ++ δ2. From (3), (4), (6) and (8) we then have
⌊δ⌋=⌊δ1 ++ δ2⌋=⌊δ1⌋ ++ ⌊δ2⌋=θ1 ++ θ2=θ and thus (9) ⌊δ⌋=θ. Pick an arbitrary w ∈ Q;
from (9) it then suffices to show there exists n∈N such that reachn(R, G, δ, P, C1; C2, ϵ, w).
As w ∈ Q, from (5) we know there exists k such that (10) reachk(R, G, δ2, P, C2, ϵ, w).
Consequently, from (7), (10) and Lemma 17 we know ∃n. reachn(R, G, δ1 ++ δ2, P, C1; C2, ϵ,

wq), and thus from (8) we have ∃n. reachn(R, G, δ, P, C1; C2, ϵ, wq), as required.

Case Atom
Pick arbitrary R, G, α, p, q, p′, q′, f, a, ϵ, w such that (1) (p′∗p, a, ϵ, q′∗q)∈Axiom, (2) G(α)=(p, ϵ, q)
and (3) w∈q′ ∗ q ∗ f . It then suffices to show reach1(R, G, [α], p′ ∗ p ∗ f , a, ϵ, w).
From the control flow transitions we know a a−→ skip and thus (4) a id−→∗ a−→ skip. From (3)
we know (5) there exists l′

q ∈ q′, lq ∈ q, lf ∈ f such that w=(l′
q, lq ◦ lf ). Pick an arbitrary

state l and m ∈ ⌊TwU ◦ l⌋. We then have m ∈ ⌊TwU ◦ l⌋=⌊l′
q ◦ lq ◦ lf ◦ l⌋. As l′

q ◦ lq ∈ q′ ∗ q,
we then have m ∈ ⌊q ∗ q′ ∗ {lf ◦ l}⌋. Consequently, from (1) and atomic soundness we know
there exists m′ ∈ ⌊p′ ∗ p ∗ {lf ◦ l}⌋ such that (m′, m) ∈ JaKϵ. In other words, there exists
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l′
p ∈ p′, lp ∈ p such that m′ ∈ ⌊l′

p ◦ lp ◦ lf ◦ l⌋ = ⌊Tw′U ◦ l⌋ with (6) w′=(l′
p, lp ◦ lf ). That

is, (7) ∀l. ∀m ∈ ⌊TwU ◦ l⌋. ∃m′ ∈ ⌊Tw′U ◦ l⌋. (m′, m) ∈ JaKϵ. As such, from (4), (7) and
the definition of a

⇝ we have (8) C, w′ a
⇝ skip, w, ϵ . Moreover, since l′

p ∈ p′, lp ∈ p, lf ∈ f

by definition we have (9) w′ ∈ p′ ∗ p ∗ f . Consequently, from (5), (6), (8), (9) and the
definition of guar we have (10) guar(p ∗ p′, q ∗ q′, p′ ∗ p ∗ f , {w}, a, skip, a, ϵ).

There are now two cases: i) ϵ ∈ ErExit; or ii) ϵ=ok. In case (i), from (2), (10) and
the definition of reach we have reach1(R, G, [α], p′ ∗ p ∗ f , a, ϵ, w), as required. In case (ii),
from Corollary 6 we have (11) reach0(R, G, [ ], {w}, skip, ϵ, w). As such, since ϵ=ok (case
assumption), from (2), (10), (11) and the definition of reach we have reach1(R, G, [α],
p′ ∗ p ∗ f , a, ϵ, w), as required.

Case AtomLocal
Pick arbitrary R, G, p, q, a, w=(lq, g) such that (1) (p, a, ok, q) ∈ Axiom, (2) lq ∈ q. Let
δ=[L], we then have ⌊δ⌋=[ ], and thus it suffices to show reach1(R, G, δ, p, a, ok, w).
From the control flow transitions we know a a−→ skip and thus (3) a id−→∗ a−→ skip. Pick
an arbitrary state l and m ∈ ⌊TwU ◦ l⌋. We then have m ∈ ⌊TwU ◦ l⌋=⌊lq ◦ g ◦ l⌋. As
lq ∈ q, we then have m ∈ ⌊q ∗ {g ◦ l}⌋. Consequently, from (1) and atomic soundness
we know there exists m′ ∈ ⌊p ∗ {g ◦ l}⌋ such that (m′, m) ∈ JaKok. That is, there exists
lp ∈ p such that m′ ∈ ⌊lp ◦ g ◦ l⌋ = ⌊Tw′U ◦ l⌋ with (4) w′=(lp, g). In other words,
(5) ∀l. ∀m ∈ ⌊TwU ◦ l⌋. ∃m′ ∈ ⌊Tw′U ◦ l⌋. (m′, m) ∈ JaKok. As such, from (3), (5) and
the definition of a

⇝ we have (6) C, w′ a
⇝ skip, w, ok . Furthermore, from the definitions of

w, w′ we have (7) wG=w′G=g. Consequently, from (6), (7) and the definition of a
⇝L we

have (8) C, w′ a
⇝L skip, w, ok. Moreover, since lp ∈ p by definition we have (9) w′ ∈ p.

As such, from (8) and the definition of a
⇝L we also have (10) C, p

a
⇝L skip, {w}, ok. From

Corollary 6 we have (11) reach0(R, G, [ ], {w}, skip, ok, w). As such, since δ=[L], from (10),
(11) and the definition of reach we have reach1(R, G, δ, p, a, ok, w), as required.

Case EnvL
Pick arbitrary R, G, α, Θ, p, p′, f, r, Q, C, ϵ such that (1) R(α)=(p, ok, r) and (2) R, G, Θ ⊢

[
p′∗ r ∗ f

]
C [ϵ :Q]. Pick arbitrary (3) θ ∈ α :: Θ. We then know there exists θ′ such that (4) θ′ ∈ Θ
and θ=α :: θ′. From (2), (4) and the inductive hypothesis we then know there exists δ′ such
that (5) ⌊δ′⌋=θ′ and (6) ∀w ∈ Q. ∃n. reachn(R, G, δ′, p′ ∗ r ∗ f , C, ϵ, w). Let δ=α :: δ′.
We then have ⌊δ⌋=α :: ⌊δ′⌋=α :: θ′=θ and thus (7) ⌊δ⌋=θ. Pick an arbitrary w∈Q, it then
suffices to show there exists n such that reachn(R, G, δ, p′ ∗ p ∗ f , C, ϵ, w).
As w ∈ Q, from (6) and the inductive hypothesis we know there exists k such that
(8) reachk(R, G, δ′, p′ ∗ r ∗ f , C, ϵ, w). Pick an arbitrary wr ∈ p′ ∗ r ∗ f . We then know
(9) there exists l′

p ∈ p′, lr ∈ r, lf ∈ f such that w=(l′
p, lr ◦ lf ).

Pick arbitrary lr ∈ r, (l, lr ◦ g) ∈ p′ ∗ r ∗ f . We then know l ∈ p′ and since lr ∈ r,
we also have g ∈ f . Consequently, since l ∈ p′ and g ∈ f , by definition we have
(10) A=

{
(l, lp ◦ g) lp ∈ p

}
⊆ p′ ∗ p ∗ f . We also know (11) ∅ ⊂ A , as otherwise we

arrive at a contradiction as follows. As (l, lr ◦ g) ∈ p′ ∗ r ∗ f is a world, we know lr # l ◦ g;
i.e. as lr ∈ r, we have r ∗ {l ◦ g} ≠ ∅. As such, as all rely/guarantee relations in proof rule
contexts are well-formed, i.e. wf(R, G) holds, and since r ∗ {l ◦ g} ̸= ∅, from wf(R, G) and
(1) we know p ∗ {l ◦ g} ̸= ∅. That is, there exists lp ∈ p such that lp # l ◦ g, and thus
(l, lp ◦ g) ∈ A, arriving at a contradiction since we assumed A=∅. Consequently, from (9),
(10), (11) and the definition of rely we have (12) rely(p, q, p′ ∗ p ∗ f , p′ ∗ r ∗ f ). As such,
since δ=α :: δ′, from (1), (8), (12) and the definition of reach we have reachk+1(R, G, δ,

p′ ∗ p ∗ f , C, ϵ, w), as required.
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Case EnvR
The EnvR rule can be derived as follows and is thus sound.

R, G, Θ ⊢ [P ] C
[
ϵ :r′∗ r ∗ f

]
R(α)=(r, ϵ, q) wf(R, G)

R, G, [α] ⊢
[

r ∗ f
]

skip
[
ϵ : q ∗ f

] SkipEnv
stable(r′, R ∪ G)

R, G, [α] ⊢
[
r′∗ r ∗ f

]
skip

[
ϵ :r′∗ q ∗ f

] Frame

R, G, Θ ++ [α] ⊢ [P ] C; skip
[
ϵ :r′∗ q ∗ f

] Seq

R, G, Θ ++ [α] ⊢ [P ] C
[
ϵ :r′∗ q ∗ f

] EndSkip

Case Loop1
Pick arbitrary R, G, P, C and wp ∈ P . It then suffices to show reach0(R, G, [ ], P, C⋆, ϵ, wp).
This follows immediately from the definition of reach0 and since C⋆ id−→∗skip and wp ∈ P .

Case Loop2
Pick arbitrary R, G, Θ, P, Q, C, ϵ such that (1) R, G, Θ ⊢ [P ] C⋆; C [ϵ :Q]. Pick an arbitrary
θ ∈ Θ. From (1) and the inductive hypothesis we know there exists δ such that (2) ⌊δ⌋=θ

and (3) ∀w ∈ Q. ∃n. reachn(R, G, δ, P, C⋆; C, ϵ, w). Pick an arbitrary wq ∈Q; from (2) it
then suffices to show there exists n such that reachn(R, G, δ, P, C⋆, ϵ, wq).
As wq ∈ Q, from (3) we know there exists n such that (4) reachn(R, G, δ, P, C⋆; C, ϵ, wq).
On the other hand, from the control flow transitions (Fig. 6) we have C⋆ id−→ C⋆; C and thus
(5) C⋆ id−→∗C⋆; C. As such, from (4), (5) and Lemma 11 we also have reachn(R, G, δ, P, C⋆, ϵ,

wq), as required.

Case BackwardsVariant
Pick arbitrary R, G, Θ, S, C such that (1) for all k: R, G, Θ ⊢

[
S(k)

]
C

[
ok : S(k+1)

]
. Pick

an arbitrary n. We then proceed by induction on n.

Base case (n=0)
From the proof of Loop1 we then simply have R, G, {[]} ⊢

[
S(0)

]
C

[
ok : S(0)

]
, as required.

Inductive case (n=i+1)
From (1) we then have R, G, Θ ⊢

[
S(i)

]
C

[
ok : S(n)

]
. Moreover, from the inductive hypo-

thesis we have R, G, Θi ⊢
[
S(0)

]
C⋆

[
ok : S(i)

]
. Consequently, from the proof of Seq above

we have R, G, Θn ⊢
[
S(0)

]
C⋆; C

[
ok : S(n)

]
, and thus from the proof of Loop2 above we have

R, G, Θn ⊢
[
S(0)

]
C⋆

[
ok : S(n)

]
, as required.

Case Choice
Pick arbitrary R, G, Θ, P, Q, C1, C2, ϵ such that (1) R, G, Θ ⊢ [P ] Ci [ϵ :Q] for some i ∈ {1, 2}.
Pick an arbitrary θ ∈ Θ. From (1) and the inductive hypothesis we know there exists δ such

that (2) ⌊δ⌋=θ and (3) ∀w ∈ Q. ∃n. reachn(R, G, δ, P, Ci, ϵ, w). Pick an arbitrary wq ∈Q;
from (2) it then suffices to show there exists n such that reachn(R, G, δ, P, C1 + C2, ϵ, wq).
As wq ∈ Q, from (3) we know there exists n such that (4) reachn(R, G, δ, P, Ci, ϵ, wq). On
the other hand, from the control flow transitions (Fig. 6) we have C1 + C2

id−→ Ci and thus
(5) C1 + C2

id−→∗Ci. As such, from (4), (5) and Lemma 11 we also have reachn(R, G, δ, P,

C1 + C2, ϵ, wq), as required.
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Case Cons
Pick arbitrary R, R′, G, G′, Θ, Θ′, P, P ′, Q, Q′, C, ϵ such that (1) P ′ ⊆ P ; (2) R′, G′, Θ′ ⊢ [P ′]
C [ϵ :Q′]; (3) Q ⊆ Q′; (4) R′ ≼Θ R; (5) G′ ≼Θ G; and (6) Θ ⊆ Θ′. Pick an arbitrary
θ ∈ Θ. As θ ∈ Θ, from (6) we also have θ ∈ Θ′. As such, from (2) and the inductive
hypothesis we know there exists δ such that (7) ⌊δ⌋=θ and (8) ∀w ∈ Q′. ∃n. reachn(R′, G′,

δ, P ′, C, ϵ, w). Pick an arbitrary wq ∈Q; from (7) it then suffices to show there exists n such
that reachn(R, G, δ, P, C, ϵ, wq).
As wq ∈ Q, from (3) we also have wq ∈ Q′. Consequently, from (8) we know there exists n

such that (9) reachn(R′, G′, δ, P ′, C, ϵ, wq). On the other hand, since θ ∈ Θ, from (4), (5)
and (7) we also have (10) R′ ≼⌊δ⌋ R and G′ ≼⌊δ⌋ G. Consequently, from (1), (9), (10)
and Lemma 22 we have reachn(R, G, δ, P, C, ϵ, wq), as required.

Case Comb
Pick arbitrary R, G, Θ1, Θ2, P, Q, C, ϵ such that (1) R, G, Θ1 ⊢ [P ] C [ϵ :Q]; and (2) R, G, Θ2 ⊢ [P ]
C [ϵ :Q]. Pick an arbitraryθ ∈ Θ1 ∪ Θ2. There are now two cases to consider: i) θ ∈ Θ1; or
ii) θ ∈ Θ2. In case (i) from (1) and the inductive hypothesis we know there exists δ such that
(3) ⌊δ⌋=θ and (4) ∀w ∈ Q. ∃n. reachn(R, G, δ, P, C, ϵ, w). Pick an arbitrary wq ∈Q; from
(3) it then suffices to show there exists n such that reachn(R, G, δ, P, C, ϵ, wq). As wq ∈ Q,
from (4) we know there exists n such that reachn(R, G, δ, P, C, ϵ, wq), as required.
Similarly, in case (ii) from (2) and the inductive hypothesis we know there exists δ such that
(5) ⌊δ⌋=θ and (6) ∀w ∈ Q. ∃n. reachn(R, G, δ, P, C, ϵ, w). Pick an arbitrary wq ∈Q; from
(5) it then suffices to show there exists n such that reachn(R, G, δ, P, C, ϵ, wq). As wq ∈ Q,
from (6) we know there exists n such that reachn(R, G, δ, P, C, ϵ, wq), as required.

Case Par
Pick arbitrary R1, R2, G1, G2, Θ1, Θ2, P1, P2, Q1, Q2, C1, C2, ϵ such that (1) R1, G1, Θ1 ⊢ [P1]
C1 [ϵ :Q1]; (2) R2, G2, Θ2 ⊢ [P2] C2 [ϵ :Q]2; (3) R1 ⊆ G2 ∪ R2; (4) R2 ⊆ G1 ∪ R1; and
(5) dsj(G1, G2). Pick an arbitrary θ ∈ Θ1 ∩ Θ2. As θ ∈ Θ1 ∩ Θ2, we also have θ ∈ Θ1.

Consequently, from (1) and the inductive hypothesis we know there exists δ1 such that
(6) ⌊δ1⌋=θ and (7) ∀w ∈ Q1. ∃i. reachi(R, G, δ1, P1, C, ϵ, w). Similarly, as θ ∈ Θ1 ∩ Θ2,
we also have θ ∈ Θ2. Consequently, from (2) and the inductive hypothesis we know there
exists δ2 such that (8) ⌊δ2⌋=θ and (9) ∀w ∈ Q2. ∃j. reachj(R, G, δ2, P2, C, ϵ, w). From
(6), (8) and Prop. 19 we then know ⌊δ1 || δ2⌋=⌊δ1⌋=⌊δ2⌋=θ and thus (10) ⌊δ1 || δ2⌋=θ.
Pick an arbitrary wq ∈ Q1 ∗ Q2. From (10) it then suffices to show there exists n such that
reachn(R1 ∩ R2, G1 ⊎ G2, δ1 || δ2, P1 ∗ P2, C1 || C2, ϵ, w1 • w2).
As wq ∈ Q1 ∗ Q2, we know there exists w1 ∈ Q1, w2 ∈ Q2 such that wq=w1 • w2. It then
suffices to show there exists n ∈N such that reachn(R1 ∩ R2, G1 ⊎ G2, δ, P1 ∗ P2, C1 || C2, ϵ,

w1•w2). As w1 ∈ Q1, from (7) we know there exists i such that (11) reachi(R1, G1, δ1, P1, C1,

ϵ, w1). Similarly, as w2 ∈ Q2, from (9) we know there exists j such that (12) reachj(R2, G2,

δ2, P2, C2, ϵ, w2). Consequently, from (3)–(5), (6), (8), (11), (12), the well-formedness of
all rely/guarantee contexts and Lemma 20 we know there exists n such that reachn(R1 ∩ R2,

G1 ⊎ G2, δ1 || δ2, P1 ∗ P2, C1 || C2, ϵ, w1 • w2), as required.

Case Frame
Pick arbitrary R, G, Θ, P, Q, R, C, ϵ such that (1) R, G, Θ ⊢ [P ] C [ϵ :Q] and (2) stable(R, R ∪ G).
Pick an arbitrary θ ∈ Θ. From (1) and the inductive hypothesis we know there exists δ such

that (3) ⌊δ⌋=θ and (4) ∀w ∈ Q. ∃n. reachn(R, G, δ, P, C, ϵ, w). Pick an arbitrary w∈Q ∗ R;
from (3) it then suffices to show there exists n such that reachn(R, G, δ, P ∗ R, C, ϵ, w).
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As w ∈Q ∗ R, we know there exists wq ∈Q, wr ∈R such that w=wq • wr. Consequently, as
wq ∈Q from (4) we know there exists n such that (5) reachn(R, G, δ, P, C, ϵ, wq). Moreover,
as w=wq • wr and wr ∈ R, we also have (6) w ∈ {wq} ∗ R. Consequently, from the well-
formedness of the rely/guarantee contexts, (2), (5), (6) and Lemma 21 we know reachn(R,

G, δ, P ∗ R, C, ϵ, w), as required. ◀
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HID-Alloc
t = {f1 : t1, · · · , fn : tn}[

x Z⇒−
]

l: t x :=τ alloc()
[

ok : ∃l. x Z⇒ l ∗ ∗size(t1)+···+size(tn)−1
i=0 l+i 7→(0, τ, 0)

∗ x.f1=x ∗ x.f2=x+size (t1) ∗ · · · ∗ x.fn=x+size (tn−1)

]
HID-Read[
y Z⇒− ∗ x.f=x+i ∗ x Z⇒(l, τl) ∗ l+i 7→V

]
l: y :=τ [x.f ]

[
ok : y Z⇒V ∗ x.f=x+i ∗ x Z⇒(l, τl) ∗ l+i 7→V

]
HID-ReadArray[

x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ z Z⇒(j, τj , ιj)
∗ l+i+j 7→V ∗ y Z⇒−

]
l: y :=τ [x.f [z]]

[
ok : x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ z Z⇒(j, τj , ιj)

∗ l+i+j 7→V ∗ y Z⇒V

]
HID-Write[
x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ l+i 7→− ∗ y Z⇒V

]
l: [x.f ] :=τ y

[
ok : x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ l+i 7→V ∗ y Z⇒V

]
HID-WriteSecret[
x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ l+i 7→−

]
l: [x.f ] :=τ ∗

[
ok : x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ l+i 7→(v, τ, 1)

]
HID-WriteArray[

x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ z Z⇒(j, τj , ιj)
∗ l+i+j 7→− ∗ y Z⇒V

]
l: [x.f [z]] :=τ y

[
ok : x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ z Z⇒(j, τj , ιj)

∗ l+i+j 7→V ∗ y Z⇒V

]
HID-SendVal[
c 7→L

]
l: send(c, v)τ

[
ok : c 7→L ++ [(v, τ, 0)]

] HID-Send[
c 7→L ∗ x Z⇒V

]
l: send(c, x)τ

[
ok : c 7→L ++ [V ]

]
HID-Recv[
c 7→ [(v, τt, ι)] ++ L ∗ x Z⇒− ∗ (ι=0 ∨ τ ∈Trust)

]
l: recv(c, x)τ

[
ok : c 7→L ∗ x Z⇒(v, τt, ι) ∗ (ι=0 ∨ τ ∈Trust)

]
HID-RecvEr
[c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust] l: recv(c, x)τ [er : c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust]

Figure 7 The CASLHID axioms (excerpt), where V and its variants (e.g. Vy) range over triples of
values, thread identifiers and secret attribute (0 for non-secret and 1 for secret)

C CASLHID: Detecting Information Disclosure Attacks on the Heap

We present CASLHID, an instance of CASL for detecting heap-based information disclosure
exploits. As in CASLID, we assume disjoint thread memory spaces, whereby the adversary
and the vulnerable programs communicate by transmitting data over a shared channel.
The CASLHID atomics, AtomHID, are defined below; as before, when variable x stores heap
location l, then [x] denotes dereferencing l. AtomHID include primitives for memory allocation,
t x := alloc(), allocating n memory units in the heap when n is the size of the record type
t; heap lookup, y := [x.f ], reading from the heap location given by x.f ; heap array lookup,
y := [x.f [z]]; heap update, [x.f ] := y, writing to the heap location given by x.f ; heap array
update, [x.f [z]] := y; secret generation, [x.f ] := ∗, generating a random (∗) value and writing
it to the heap location given by x.f ; sending over channel c (send(c, v) and send(c, x)); and
receiving over channel c (recv(c, x)).

AtomHID ∋ a ::= l: t x :=τ alloc() | l: y :=τ [x.f ] | l: y :=τ [x.f [z]] | l: [x.f ] :=τ y

| l: [x.f [z]] :=τ y | l: [x.f ] :=τ ∗
| l: send(c, v)τ | l: send(c, x)τ | l: recv(c, x)τ

CASLHID States and Axioms. The CASLHID states are those of CASLSO (in §4) . We
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present the CASLHID axioms in Fig. 7. The HID-Alloc, HID-Read, HID-Write, HID-
WriteArray, HID-SendVal and HID-Send rules are analogous to their counterparts in
CASLHO. The HID-WriteSecret generates a secret value v (with secret attribute 1) and
stores it at the heap location given by x.f (i.e. l+i when x stores value l and x.f=x+i). The
HID-Recv and HID-RecvEr rules are analogous to ID-Recv and ID-RecvEr. Specifically,
HID-Recv describes when receiving data does not constitute information disclosure, i.e. when
the value received is not secret (ι = 0) or the recipient is trusted (τ ∈ Trust). By contrast,
HID-RecvEr describes when receiving data leads to information disclosure, i.e. when the
value received is secret and the recipient is untrusted (τ ̸∈Trust), in which case the underlying
state is unchanged.

▶ Example 24. Consider the example in Fig. 8a, where the type session (defined at the top
of ??) contains an array buf of size 2 and an integer sec to store a secret value. The τv (the
right thread) allocates 3 (the size of session) contiguous heap locations starting at some
address l (where x.buf =x and x.sec=x+2) and returns l in x. It then generates a secret
value and stores it at [x.sec], namely at l+2 and proceeds to receive a value from τa, stores it
in i and uses it to index x.buf . As such, since x.buf =x, x.sec=x+2 and x stores l, when τa
sends i=2, then τv retrieves [x.buf [i]], i.e. the secret value stored at heap location l+2! That
is, τa exploits τv to leak a secret value. We present proof sketches of τa and τv in Fig. 8b and
Fig. 8c, respectively. As before, the // annotations at each proof step describe the CASL
proof rules applied.

CONCUR 2023
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R(α′
1) ≜ (c 7→ [], ok, c 7→ [(2, τa, 0)]) R(α′

2) ≜ (c 7→ [(v, τv, 1)], ok, c 7→ []) Ra ≜ Gv Ga ≜ R
G(α1) ≜ (c 7→ [(2, τa, 0)], ok, c 7→ []) G(α2) ≜ (c 7→ [], ok, c 7→(v, τv, 1)) Θ ≜ {[α′

1, α1, α2, α′
2]}

struct session = {buf : int[2], sec : int}

∅, Ga ∪ Gv, Θ0 ⊢ [Pa ∗ Pv] // Par

Ra, Ga, Θ0 ⊢ [Pa]
send(c, 2)τa ;
recv(c, y)τa ;

Ra, Ga, Θ ⊢ [er : Qa]

Rv, Gv, Θ0 ⊢ [er : Pv]
struct session x :=τv alloc();
[x.sec] :=τv ∗;
recv(c, i)τv ;
z :=τv [x.buf [i]];
send(c, z)τv ;

Rv, Gv, Θ ⊢ [er : Qv]
∅, Ga ∪ Gv, Θ ⊢ [er : Qa ∗ Qv]

(a)

Ra, Ga, Θ0 ⊢
[
Pa ≜ c 7→ [] ∗ τa ̸∈Trust

]
send(c, 2)τa // Atom + HID-SendVal

Ra, Ga, {[α′
1]} ⊢

[
ok: c 7→ [(2, τa, 0)] ∗ τa ̸∈Trust

]
// EnvL × 2

Ra,Ga,{[α′
1,α1,α2]}⊢

[
ok: c 7→[(0, τv, 1)] ∗ τa ̸∈Trust

]
recv(c, y)τa // Atom + HID-RecvEr

Ra, Ga, Θ ⊢
[
er : Qa ≜ c 7→[(0, τv, 1)] ∗ τa ̸∈Trust

]
(b)

Rv, Gv,

Θ0 ⊢
[
Pv ≜ x Z⇒− ∗ i Z⇒− ∗ z Z⇒− ∗ c 7→ []

]
struct session x :=τv alloc() // HID-Alloc + AtomLocal

Θ0 ⊢
[
ok: i Z⇒− ∗ z Z⇒− ∗ c 7→ [] ∗ ∃l. x Z⇒ l ∗ ∗2

j=0 l+j 7→(0, τv, 0) ∗ x.buf =x ∗ x.sec =x+2
]

[x.sec] :=τv ∗; // AtomLocal+HID-Read
Θ0 ⊢

[
ok: i Z⇒− ∗ z Z⇒− ∗ c 7→ [] ∗ ∃l. x Z⇒ l ∗ ∗1

j=0 l+j 7→(0, τv, 0) ∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2
]

// EnvL

{[α′
1]}⊢

[
ok: i Z⇒− ∗ z Z⇒− ∗ c 7→ [(2, τa, 0)] ∗ ∃l. x Z⇒ l ∗ ∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
recv(c, i)τv ; // Atom + HID-Recv

{[α′
1, α1]}⊢

[
ok: i Z⇒(2, τa, 0) ∗ z Z⇒− ∗ c 7→ [] ∗ ∃l. x Z⇒ l ∗ ∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
z := [x.buf [i]]; // AtomLocal+HID-ReadArray

{[α′
1, α1]}⊢

[
ok: i Z⇒(2, τa, 0) ∗ z Z⇒(v, τv, 1) ∗ c 7→ [] ∗ ∃l. x Z⇒ l ∗ ∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
send(c, z)τv ; // (Atom + HID-Send)

{[α′
1, α1, α2]}⊢

[
ok: i Z⇒(2, τa, 0) ∗ z Z⇒(v, τv, 1) ∗ c 7→ [(v, τv, 1)] ∗ ∃l. x Z⇒ l ∗ ∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
// EnvEr

Θ⊢

[
er : Qv≜ i Z⇒(2, τa, 0) ∗ z Z⇒(v, τv, 1) ∗ c 7→ [(v, τv, 1)] ∗ ∃l. x Z⇒ l ∗ ∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
(c)

Figure 8 CASLHID proof outlines of Example 24 (a), its adversary program (b) and vulnerable
program (c)
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send(c, maxInt);

recv(c, s);
if (s≤maxInt)
y := s+1;
x := alloc(y);
l: [x+s] := 0;

Figure 9 A memory safety vulnerability on the heap at l (zero allocation)

D CASL for Exploit Detection: Memory Safety Attacks

Memory Safety Attacks. Consider the example in Fig. 9 illustrating an instance of the
zero allocation vulnerability [21]. Specifically, τv receives a size value in s and allocates s+1
units on the heap. As such, when τa sends maxInt and τv receives s=maxInt, then s+1
triggers an integer overflow and wraps to 0, i.e. results in storing 0 in y and calling alloc(0),
namely a zero allocation. As per the common behaviour of alloc, calling alloc(0) leads to
allocating a pre-defined minimum number, 0 < min ≪ maxInt, of units (i.e. the minimum
chunk size, typically 8 or 16 bytes) on the heap. Thus, the subsequent heap access [x+s] := 0
(dereferencing the heap location at x+s and writing 0 to it) is out of bounds and accesses
adjacent memory, thus causing a memory safety error (e.g. a segmentation fault, or a more
subtle corruption). Such undefined behaviours are what exploits leverage to induce the target
program generate incorrect results without always crashing.

We present CASLMS for detecting memory safety bugs and exploits. The CASLMS
atomics, AtomMS, are defined below and include assignment, heap lookup, heap update,
heap allocation and disposal, as well as constructs for transmitting messages over a shared
channel. Additionally, AtomMS include constructs for heap lookup and update on a location
offset o (x := [y+o] and [x+o] := y).

AtomMS ∋ a ::= x := y | x := v | x := [y] | [x] := y | x := alloc(n) | free(x)
| x := [y+o] | [x+o] := y | send(c, v) | send(c, x) | recv(c, x)

CASLMS States and Axioms. The CASLMS states are pairs comprising variable stacks
and heaps: StateMS ≜ Stack × Heap with Stack ≜ Var ⇀ (Val ∪ (Loc × N)) and
Heap ≜ Loc ⇀ Val ⊎ {⊥}. Specifically, a variable x may either hold a value v, or a pair
(l, b) where l∈Loc denotes a location and b denotes its bound, namely the size of the block of
addresses allocated at l. For instance, given a stack s with s(x)=(l, n), the address given by
x+i is valid (within bounds) when 0≤ i<n, and is out of bounds otherwise. Moreover, given
a location l and a heap h, h(l) = v denotes that location l is allocated and stores value v;
and h(l) = ⊥ denotes that location l is deallocated. Note that as we are only concerned with
memory safety errors here, we no longer record the provenance of values (unlike in CASLSO
and CASLHO) or their secret attribute (unlike in CASLID). Composition over StateMS is
defined component-wise as (⊎, ⊎). The StateMS unit set is {(∅, ∅)}. We write x Z⇒v for the
set {([x 7→ v], ∅)}, i.e. states where the stack contains a single variable x with value v and
the heap is empty. Similarly, we write x Z⇒ (l, b) for {([x 7→ (l, b)], ∅)} and write x Z⇒ l for
x Z⇒(l, −), i.e. ∃b. x Z⇒(l, b). Analogously, we write l 7→v for {(∅, [l 7→ v])}, and write l ̸7→ for
l 7→⊥.

The CASLMS axioms are given in Fig. 10. The MS-Assign, MS-AssignVal, MS-Read,
MS-Write, MS-SendVal and MS-Recv are analogous to those of CASLSO and CASLHO.

CONCUR 2023
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MS-Assign[
x Z⇒−∗y Z⇒v

]
x := y

[
ok : x Z⇒v∗y Z⇒v

] MS-AssignVal[
x Z⇒−

]
x := v

[
ok : x Z⇒v

] MS-FreeUAF
[x Z⇒ l∗l ̸7→] free(x) [er : x Z⇒ l∗l ̸7→]

MS-AllocZero[
x Z⇒−∗y Z⇒0

]
x := alloc(y)

[
ok :∃l. x Z⇒(l,1)∗y Z⇒0∗l 7→v

] MS-Free[
x Z⇒ l ∗ l 7→−

]
free(x)

[
ok : x Z⇒ l ∗ l ̸7→

]
MS-Alloc[
x Z⇒− ∗ y Z⇒n ∗ n>0

]
x := alloc(y)

[
ok : ∃l. x Z⇒(l, n) ∗ y Z⇒n ∗ n>0 ∗ ∗n−1

i=0 l+i 7→v

]
MS-Read[
x Z⇒− ∗ y Z⇒ l ∗ l 7→v

]
x := [y]

[
ok : x Z⇒v ∗ y Z⇒ l ∗ l 7→v

] MS-ReadUAF
[y Z⇒ l ∗ l ̸7→] x := [y] [er : y Z⇒ l ∗ l ̸7→]

MS-Write[
x Z⇒ l ∗ y Z⇒v ∗ l 7→−

]
[x] := y

[
ok : x Z⇒ l ∗ y Z⇒v ∗ l 7→v

] MS-WriteUAF
[x Z⇒ l ∗ l ̸7→] [x] := y [er : x Z⇒ l ∗ l ̸7→]

MS-SendVal[
c 7→L

]
send(c, v)

[
ok : c 7→L++[v]

] MS-Recv[
c 7→ [v] ++ L ∗ x Z⇒−

]
recv(c, x)

[
ok : c 7→L ∗ x Z⇒v

]
MS-ReadOffset[
x Z⇒− ∗ y Z⇒(l, b) ∗ o Z⇒n ∗ n < b ∗ l+n 7→v

]
x := [y+o]

[
ok : x Z⇒v ∗ y Z⇒(l, b) ∗ o Z⇒n ∗ n < b ∗ l+n 7→v

]
MS-WriteOffset[
x Z⇒(l, b) ∗ y Z⇒v ∗ o Z⇒n ∗ n < b ∗ l+n 7→−

]
[x+o] := y

[
ok : x Z⇒(l, b) ∗ y Z⇒v ∗ o Z⇒n ∗ n < b ∗ l+n 7→v

]
MS-ReadOffsetOOB[

y Z⇒(l, b)
∗ o Z⇒n ∗ n≥b

]
x := [y+o]

[
er : y Z⇒(l, b)

∗ o Z⇒n ∗ n≥b

]
MS-WriteOffsetOOB[

x Z⇒(l, b)
∗ o Z⇒n ∗ n≥b

]
[x+o] := y

[
er : x Z⇒(l, b)

∗ o Z⇒n ∗ n≥b

]
Figure 10 The CASLMS axioms (excerpt)

The MS-Free rule describes deallocating a heap location: when x records location l (x Z⇒ l)
and l is allocated (l 7→ −), then free(x) deallocates l, replacing l 7→ − with l ̸7→. On the
other hand, when l is already deallocated, then free(x) leads to a use-after-free error, as
captured by MS-FreeUAF. The MS-ReadUAF and MS-WriteUAF rules are analogous. The
MS-Alloc rule allocates n (non-zero) adjacent heap units and returns the address of the
first unit in x. Dually, MS-AllocZero describes zero allocation (with y Z⇒0). As discussed
in §2.2, in such cases a pre-defined minimum number of units, min, are allocated; here we
assume min=1 and allocate one unit in the case of zero allocation. When y stores (l, b) and
o stores n, MS-ReadOffset describes reading from the location at offset n from l (i.e. l+n)
provided that the offset is valid (n<b). On the other hand, MS-ReadOffsetOOB describes
the out-of-bounds read access when n≥b. The MS-WriteOffset and MS-WriteOffsetOOB
rules are analogous.

▶ Example 25. In Fig. 11 we present a CASLMS proof sketch of (out-of-bounds) memory
safety exploit in Fig. 9. Note that we use Cons to rewrite y Z⇒ maxInt+1 ∗ maxInt+1=0
as y Z⇒0 ∗ maxInt+1=0 and additionally infer maxInt ≥ 1 (holds trivially). This allows us
to apply MS-AllocZero to allocate one heap unit, which subsequently leads to an out of
bounds access detected by MS-WriteOffsetOOB.
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∅, Ga ∪ Gv, Θ0 ⊢ [Pa ∗ Pv] // Par

Ra, Ga, Θ0 ⊢
[
Pa ≜ c 7→ []

]
send(c, maxInt) // MS-SendVal

Ra, Ga, {[α′
1]} ⊢

[
er : c 7→ [maxInt]

]
// EnvL × 2

Ra, Ga, Θ ⊢
[
er : Qa≜ c 7→ []

]

Rv, Gv, Θ0 ⊢ [Pv]
recv(c, s);
if (s≤maxInt)

y := s+1;
x := alloc(y);
l: [x+s] := 0;

Rv, Gv, Θ ⊢ [er : Qv]
∅, Ga ∪ Gv, Θ ⊢ [er : Qa ∗ Qv]

(a)

Rv(α′
1)≜ (c 7→ [], ok, c 7→ [maxInt])

Gv(α1)≜ (c 7→ [maxInt], ok, c 7→ [])
Gv(α)≜ (c 7→ [], er , c 7→ [])

Ra≜ Gv

Ga≜Rv

Θ≜ {[α′
1, α,α]}

Rv, Gv, Θ0 ⊢
[
Pv ≜ x Z⇒− ∗ y Z⇒− ∗ s Z⇒− ∗ c 7→ [] ∗ maxInt+1=0

]
// EnvL

Rv, Gv, {[α′
1]} ⊢

[
ok: x Z⇒− ∗ y Z⇒− ∗ s Z⇒− ∗ c 7→ [maxInt] ∗ maxInt+1=0

]
recv(c, s); // Atom + MS-Recv

Rv, Gv, {[α′
1,α1]}⊢

[
ok: x Z⇒− ∗ y Z⇒− ∗ s Z⇒maxInt ∗ c 7→ [] ∗ maxInt+1=0

]
if (s ≤ maxInt) y := s+1 // AtomLocal + MS-AssignVal

Rv, Gv, {[α′
1,α1]}⊢

[
ok: x Z⇒− ∗ y Z⇒maxInt+1 ∗ s Z⇒maxInt ∗ c 7→ [] ∗ maxInt+1=0

]
// Cons

Rv, Gv, {[α′
1,α1]}⊢

[
ok: x Z⇒− ∗ y Z⇒0 ∗ s Z⇒maxInt ∗ c 7→ [] ∗ maxInt+1=0 ∗ maxInt ≥ 1

]
x := alloc(y); // AtomLocal + MS-AllocZero

Rv, Gv, {[α′
1,α1]}⊢

[
ok: ∃l. x Z⇒(l, 1) ∗ l 7→v ∗ y Z⇒0 ∗ s Z⇒maxInt ∗ c 7→ [] ∗ maxInt+1=0 ∗ maxInt ≥ 1

]
[x+s] := 0 // Atom + MS-WriteOffsetOOB

Rv, Gv, {[α′
1,α1, α]}⊢

[
er :Qv≜∃l.x Z⇒(l, 1)∗l 7→v∗y Z⇒0∗s Z⇒maxInt∗ c 7→ [] ∗maxInt+1=0∗maxInt ≥ 1

]
(b)

Figure 11 CASLID proof outlines of Fig. 9, its adversary program (a), and its vulnerable program
(b)
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E IRG: Incorrectness Rely-Guarantee Reasoning

IRG Parameters. As with IRG, IRG is a parametric and can be instantiated for a
multitude of concurrency scenarios. The IRG structure is analogous to that of IRG.
More concretely, 1) the IRG programming language is that of CASL, parametrised with
a set of atomics (Atom) and error exit conditions (ErExit); the IRG exit conditions are
Exit ≜ {ok} ⊎ ErExit. 2) We assume a set of abstract states (State), over which atomics
are axiomatised: Axiom ⊆ P(State) × Atom × Exit × P(State). 3) We assume a set
of (low-level) machine states (MState), over which the semantics of atomics is defined:
J.KA : Atom → Exit → P(MState × MState). 4) Finally, to ensure soundness, we assume
an erasure function, ⌊.⌋ : State → P(MState); we further assume that Axiom are sound,
i.e. for all (p, a, ϵ, q) ∈ Axiom, we have: ∀mq ∈ ⌊q⌋. ∃mp ∈ ⌊p⌋. (mp, mq) ∈ JaKAϵ. Note
that unlike in CASL where a high-level program state is a world that comprises a pair of
local and shared states, in IRG a high-level program state is simply a single state that is
shared amongst all threads. That is, program states are completely shared and there is no
thread-local component.
IRG Triples. As with CASL, an IRG triple is of the form, R, G, Θ ⊢ [p] C [ϵ :q], stating
that every state in q can be reached under ϵ for every witness trace θ ∈ Θ by executing C
on some state in p. Note that triples are expressed through sets of states (p, q ∈ P(State))
unlike in CASL where they are expressed through sets of worlds (P, Q ∈ P(World)).
IRG Proof Rules. We present the IRG proof rules in Fig. 12, where we assume that the
rely and guarantee relations in triple contexts are disjoint. Note that the IRG rules are very
similar to those of CASL, except that IRG does not include the AtomLocal and Frame
rules. This means that atomic instructions can modify the (shared) state only through the
Atom rule and thus all atomic instructions must be accounted for through actions in R/G
and recorded in the traces generated.
IRG Semantics and Soundness. The IRG operational semantics is that of CISL (Fig. 6)
and is analogously parametrised by the semantics of atomic commands defined as (machine)
state transformers.
Semantic IRG Triples. We next present the formal interpretation of IRG triples. Recall
that an IRG triple R, G, θ |= [p] C [ϵ :q] states that every state in q can be reached in n steps
(for some n) under ϵ for every trace θ∈Θ by executing C on some state in p, with the actions
of the current thread (executing C) and its environment adhering to G and R, respectively.
Put formally, R, G, Θ |= [p] C [ϵ :q] def⇐⇒ Θ ̸= ∅ ∧ ∀mq ∈⌊q⌋, θ ∈ Θ. ∃n. reachn(R, G, θ, ⌊p⌋,

C, ϵ, m), with:

reachn(R, G, θ, Mp, C, ϵ, mq) def⇐⇒ Mp ̸= ∅∧
n=0 ∧ θ=[ ] ∧ ϵ=ok ∧ C id−→∗skip ∧ mq ∈ Mp

∨ n=1 ∧ ϵ∈ErExit ∧ ∃α, p, q. θ=[α] ∧ R(α)=(p, ϵ, q) ∧ ⌊p⌋ ⊆ Mp ∧ mq ∈ ⌊q⌋
∨ n=1 ∧ ϵ∈ErExit ∧ ∃α, p, q, a, C′. θ=[α] ∧ G(α)=(p, ϵ, q) ∧ ⌊p⌋ ⊆ Mp ∧ mq ∈⌊q⌋

∧ C id−→∗C′∧ C′, p
a
⇝ −, q, ϵ

∨ ∃k, θ′, α, p, r. n=k+1 ∧ θ=[α] ++ θ′∧ R(α)=(p, ok, r)∧⌊p⌋ ⊆ Mp ∧ reachk(R, G, θ′, ⌊r⌋, C, ϵ, mq)
∨ ∃k, θ′, α, p, r, a, C′, C′′. n=k+1 ∧ θ=[α] ++ θ′∧ G(α)=(p, ok, r) ∧ ⌊p⌋ ⊆ Mp

∧ C id−→∗C′′ ∧ C′′, p
a
⇝ C′, r, ok ∧ reachk(R, G, θ′, ⌊r⌋, C′, ϵ, mq)

and

C, p
a
⇝ C′, q, ϵ

def⇐⇒ C a−→ C′ ∧ ∀mq ∈ ⌊q⌋. ∃mp ∈ ⌊p⌋. (mp, mq) ∈ JaKϵ
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IRGSkip
R, G, Θ0 ⊢

[
p
]

skip
[
ok : p

] IRGSeqEr
R, G, Θ ⊢ [p] C1 [er : q] ϵ ∈ ErExit

R, G, Θ ⊢ [p] C1; C2 [er : q]

IRGEnvEr
R(α) = (p, ϵ, q) ϵ ∈ ErExit

R, G, {[α]} ⊢ [p] C [er : q]

IRGSeq
R, G, Θ1 ⊢

[
p
]

C1
[
ok : r

]
R, G, Θ2 ⊢ [r] C2 [ϵ :q]

R, G, Θ1 ++ Θ2 ⊢ [p] C1; C2 [ϵ :q]

IRGAtom
G(α) = (p, ϵ, q) (p, a, ϵ, q) ∈ Axiom

R, G, {[α]} ⊢ [p] a [ϵ :q]

IRGEnvL
R(α)=(p, ok, r) R, G, Θ ⊢ [r] C [ϵ :q]

R, G, α :: Θ ⊢ [p] C [ϵ :q]

IRGEnvR
R, G, Θ ⊢

[
p
]

C
[
ok : r

]
R(α)=(r, ϵ, q)

R, G, Θ ++ [α] ⊢ [p] C [ϵ :q]
R, G, Θ0

IRGLoop1
⊢

[
p
]

C⋆
[
ok : p

]
IRGLoop2
R, G, Θ ⊢ [p] C⋆; C [ϵ :q]
R, G, Θ ⊢ [p] C⋆ [ϵ :q]

IRGChoice
R, G, Θ ⊢ [p] Ci [ϵ :q] for some i∈{1, 2}

R, G, Θ ⊢ [p] C1 + C2 [ϵ :q]

IRGParEr
R, G, Θ ⊢ [p] Ci [er : q] for some i∈{1, 2} er ∈ ErExit Θ ⊑ G

R, G, Θ ⊢ [p] C1 || C2 [er : q]

IRGComb
R, G, Θ1 ⊢ [p] C [ϵ :q] R, G, Θ2 ⊢ [p] C [ϵ :q]

R, G, Θ1 ∪ Θ2 ⊢ [p] C [ϵ :q]

IRGCons
p′ ⊆ p R′, G′, Θ′ ⊢

[
p′] C

[
ϵ :q′] q ⊆ q′ R ≼Θ R′ G ≼Θ G′ Θ ⊆ Θ′

R, G, Θ ⊢ [p] C [ϵ :q]

IRGPar
R1,G1,Θ1 ⊢ [p] C1 [ϵ :q] R2,G2,Θ2 ⊢ [p] C2 [ϵ :q] R1 ⊆G2∪R2 R2 ⊆G1∪R1 dsj(G1, G2) Θ1∩Θ2 ̸=∅

R1 ∩ R2, G1 ⊎ G2, Θ1 ∩ Θ2 ⊢ [p] C1 || C2 [ϵ :q]

Figure 12 The IRG proof rules, where the rely and guarantee relations in the triple contexts are
disjoint.

The first disjunct in reach simply states that any state mq ∈Mp can be simply reached under
ok in zero steps with an empty trace [ ], provided that C simply reduces to skip silently,
i.e. without executing any atomic steps (C id−→∗skip). The next two disjuncts capture the
short-circuit semantics of errors (ϵ∈ErExit). Specifically, the second disjunct states that
mq can be reached in one step under error ϵ when the environment executes a corresponding
action α, i.e. when R(α)=(p, ϵ, q), mq ∈⌊q⌋ and ⌊p⌋ ⊆ Mp; the trace of such execution is then
given by [α]. Similarly, the third disjunct states that mq can be reached in one step under ϵ

when the current thread executes a corresponding action α (G(α)=(p, ϵ, q)). Moreover, the
current thread must fulfil the specification (p, ϵ, q) of α by executing an atomic instruction
a: C may take several silent steps reducing C to C′ (C id−→∗C′) and subsequently execute
a, reducing p to q under ϵ (C′, p

a
⇝ −, q, ϵ). The latter ensures that C′ can be reduced by

executing a (C′ a−→ −) and all states in q are reachable under ϵ from some state in p by
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executing a: ∀mq ∈ ⌊q⌋. ∃mp ∈ ⌊p⌋. (mp, mq) ∈ JaKϵ. Analogously, the last two disjuncts
capture the inductive cases (n=k+1) where either the environment (penultimate disjunct) or
the current thread (last disjunct) take an ok step, and mq is subsequently reached in k steps
under ϵ.

▶ Theorem 26 (Soundness, §F). For all R, G, Θ, p, C, ϵ, q, if R, G, Θ ⊢ [p] C [ϵ :q] is derivable
using the rules in Fig. 12, then R, G, Θ |=[p] C [ϵ :q] holds.

Proof. The full proof is given in §F.



A. Raad, J. Vanegue, J. Berdine and P. O’Hearn 25:51

F IRG Soundness

In the following, whenever we write reach(.)(R, G, ., ., ., ., .), we assume dsj(R, G) holds.

▶ Lemma 27. For all R, G, m, M , if m ∈ M , then reach0(R, G, [ ], M, skip, ok, m) holds.

Proof. Follows immediately from the definition of reach0 and since skip id−→∗skip. ◀

▶ Lemma 28. For all n, R, G, θ, Mp, C1, C2, ϵ, mq, if ϵ ∈ ErExit and reachn(R, G, θ, Mp, C1,

ϵ, mq), then reachn(R, G, θ, Mp, C1; C2, ϵ, mq).

Proof. We proceed by induction on n.

Case n = 1
We then know that there exists α, p, q, a, C′

1, C′′
1 such that ⌊p⌋ ⊆ Mp, mq ∈⌊q⌋, θ = [α] and

either 1) R(α) = (p, ϵ, q); or 2) G(α) = (p, ϵ, q), C1
id−→∗C′′

1 and C′′
1 , p

a
⇝ C′

1, q, ϵ.
In case (1), from the definition of reach we also have reach1(R, G, [α], Mp, C1; C2, ϵ,

mq), as required. In case (2), from the control flow transitions (Fig. 6) we know that
whenever C′′

1
a−→ C′

1 then C′′
1 ; C2

a−→ C′
1; C2. As such, from C′′

1 , p
a
⇝ C′

1, q, ϵ we also have
C′′

1 ; C2, p
a
⇝ C′

1; C2, q, ϵ. Similarly, as C1
id−→∗C′′

1 , from the control flow transitions we also have
C1; C2

id−→∗C′′
1 ; C2 Consequently, from the definition of reach we also have reach1(R, G, [α], Mp,

C1; C2, ϵ, mq), as required.

Case n = k+1

∀R, G, θ, Mp, C1, C2, ϵ, mq.

ϵ ∈ ErExit ∧ reachk(R, G, θ, Mp, C1, ϵ, mq) ⇒ reachk(R, G, θ, Mp, C1; C2, ϵ, mq) (I.H)

We then know that either 1) there exist α, θ′, p, r such that θ=[α] ++ θ′, R(α)=(p, ok, r),
reachk(R, G, θ′, ⌊r⌋, C1, ϵ, mq) and ⌊p⌋ ⊆ Mp; or 2) there exist α, θ′, p, r, C′

1, C′′
1 , a such that

θ=[α] ++ θ′, G(α)=(p, ok, r), ⌊p⌋ ⊆ Mp, reachk(R, G, θ′, ⌊r⌋, C′
1, ϵ, mq), C1

id−→∗C′′
1 and C′′

1 , p
a
⇝

C′
1, r, ok.

In case (1), from reachk(R, G, θ′, ⌊r⌋, C1, ϵ, mq) and (I.H) we have reachk(R, G, θ′, ⌊r⌋,

C1; C2, ϵ, mq). Consequently, as R(α)=(p, ok, r) and ⌊p⌋ ⊆ Mp, by definition of reach we also
have reachn(R, G, θ, Mp, C1; C2, ϵ, mq), as required.

In case (2), from reachk(R, G, θ′, ⌊r⌋, C′
1, ϵ, mq) and (I.H) we have reachk(R, G, θ′, ⌊r⌋,

C′
1; C2, ϵ, mq). Moreover, as C′′

1 , p
a
⇝ C′

1, r, ok, we know C′′
1

a−→ C′
1 and thus from the control

flow transitions (Fig. 6) we know C′′
1 ; C2

a−→ C′
1; C2. As such, from C′′

1 , p
a
⇝ C′

1, r, ok we also
have C′′

1 ; C2, p
a
⇝ C′

1; C2, r, ok. Similarly, as C1
id−→∗C′′

1 , from the control flow transitions we also
have C1; C2

id−→∗C′′
1 ; C2. Consequently, as G(α)=(p, ok, r) and ⌊p⌋ ⊆ Mp, from the definition

of reach we also have reachn(R, G, θ, Mp, C1; C2, ϵ, mq), as required. ◀

▶ Lemma 29. For all n, R, G, θ, Mp, mq, C1, C2, ϵ, if reachn(R, G, θ, Mp, C2, ϵ, mq) and C1
id−→

∗C2, then reachn(R, G, θ, Mp, C1, ϵ, mq).

Proof. By induction on n.

Case n=0
Pick arbitrary R, G, θ, Mp, mq, C1, C2, ϵ such that reach0(R, G, θ, Mp, C2, ϵ, mq) and C1

id−→∗C2.
From the definition of reach0 we then know θ=[ ], ϵ=ok, C2

id−→∗skip and mq ∈ Mp. We thus

CONCUR 2023



25:52 A General Approach to Under-approximate Reasoning about Concurrent Programs

have C1
id−→∗C2

id−→∗skip, i.e. C1
id−→∗skip. Consequently, as θ=[ ], ϵ=ok and mq ∈ Mp, we also

have reach0(R, G, θ, Mp, C1, ϵ, mq), as required.

Case n=1
Pick arbitrary R, G, θ, Mp, mq, C1, C2, ϵ such that reachn(R, G, θ, Mp, C2, ϵ, mq) and C1

id−→∗C2.
We then know that there exists α, p, q, a, C′

2, C′′
2 such that ⌊p⌋ ⊆ Mp, mq ∈⌊q⌋, θ = [α] and

either 1) R(α) = (p, ϵ, q); or 2) G(α) = (p, ϵ, q), C2
id−→∗C′′

2 and C′′
2 , p

a
⇝ C′

2, q, ϵ.
In case (1), from the definition of reach we also have reach1(R, G, [α], Mp, C1; C2, ϵ, mq),

as required. In case (2), we have C1
id−→∗C2

id−→∗C′′
2 , i.e. C1

id−→∗C′′
2 . Consequently, from the

definition of reach we also have reach1(R, G, [α], Mp, C1, ϵ, mq), as required.

Case n=k+1

∀R, G, θ, Mp, mq, C1, C2, ϵ. reachk(R, G, θ, Mp, C2, ϵ, mq) ∧ C1
id−→∗C2 ⇒ reachk(R, G, θ, Mp, C1, ϵ, mq)

(I.H)

Pick arbitrary R, G, θ, Mp, mq, C1, C2, ϵ such that reachn(R, G, θ, Mp, C2, ϵ, mq) and C1
id−→∗C2.

We then know that there exists α, θ′, p, r, a, C′
2, C′′

2 such that ⌊p⌋ ⊆ Mp, θ = [α] ++ θ′ and
either 1) R(α) = (p, ϵ, r) and reachk(R, G, θ′, ⌊r⌋, C2, ϵ, mq) ; or 2) G(α) = (p, ϵ, r), C2

id−→∗C′′
2 ,

C′′
2 , p

a
⇝ C′

2, r, ϵ and reachk(R, G, θ′, ⌊r⌋, C′
2, ϵ, mq).

In case (1), from reachk(R, G, θ′, ⌊r⌋, C2, ϵ, mq) and I.H we have reachk(R, G, θ′, ⌊r⌋, C1, ϵ,

mq). Consequently, from the givens and the definition of reach we also have reachn(R, G, θ,

Mp, C1, ϵ, mq), as required. In case (2), we have C1
id−→∗C2

id−→∗C′′
2 , i.e. C1

id−→∗C′′
2 . Consequently,

from the givens and the definition of reach we also have reachn(R, G, θ, Mp, C1, ϵ, mq), as
required. ◀

▶ Lemma 30. For all n, k, R, G, θ1, θ2, Mp, Mr, mq, mr, C1, C2, ϵ, if reachk(R, G, θ2, Mr, C2,

ϵ, mq) and ∀mr ∈ Mr. reachn(R, G, θ1, Mp, C1, ok, mr), then reachn+k(R, G, θ1 ++ θ2, Mp,

C1; C2, ϵ, mq).

Proof. By induction on n.

Case n=0
Pick arbitrary k, R, G, θ1, θ2, Mp, Mr, mq, mr, C1, C2, ϵ such that reachk(R, G, θ2, Mr, C2, ϵ,

mq) and ∀mr ∈ Mr. reach0(R, G, θ1, Mp, C1, ok, mr).
From reachk(R, G, θ2, Mr, C2, ϵ, mq) we know Mr ̸= ∅. Pick an arbitrary mr ∈ Mr; we

then have reach0(R, G, θ1, Mp, C1, ok, mr). Consequently, from the definition of reach0 we
know that θ1=[ ], C1

id−→∗skip and mr ∈ Mp. Moreover, since for an arbitrary mr ∈ Mr we
also have mr ∈ Mp we can conclude that Mr ⊆ Mp. On the other hand, as C1

id−→∗skip, from
the control from transitions we have C1; C2

id−→∗skip; C2
id−→∗C2. As such, from Lemma 29

and reachk(R, G, θ2, Mr, C2, ϵ, mq) we have reachk(R, G, θ2, Mr, C1; C2, ϵ, mq). That is, as
θ1 ++ θ2=[ ] ++ θ2=θ2, we also have reachk(R, G, θ1 ++ θ2, Mr, C1; C2, ϵ, mq). Consequently,
as Mr ⊆ Mp, from Lemma 34 we have reachk(R, G, θ1 ++ θ2, Mp, C1; C2, ϵ, mq), as required.

Case n=j+1

∀k, R, G, θ1, θ2, Mp, Mr, mq, mr, C1, C2, ϵ.

reachk(R, G, θ2, Mr, C2, ϵ, mq) ∧ ∀mr ∈ Mr. reachj(R, G, θ1, Mp, C1, ok, mr)
⇒ reachj+k(R, G, θ1 ++ θ2, Mp, C1; C2, ϵ, mq)

(I.H)
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Pick arbitrary k, R, G, θ1, θ2, Mp, Mr, mq, mr, C1, C2, ϵ such that reachk(R, G, θ2, Mr, C2, ϵ,

mq) and ∀mr ∈ Mr. reachn(R, G, θ1, Mp, C1, ok, mr).
As ∀mr ∈ Mr. reachn(R, G, θ1, Mp, C1, ok, mr) and dsj(R, G) holds (i.e. dom(R) ∩

dom(G)=∅), from the definition of reachn we then know that for all mr ∈ Mr, there exist
α, θ′

1, p, r, C′
1, C′′

1 , a such that either:
i) θ1=[α] ++ θ′

1, ⌊p⌋ ⊆ Mp, R(α)=(p, ok, r) and reachj(R, G, θ′
1, ⌊r⌋, C1, ok, mr); or

ii) θ1=[α] ++ θ′
1, ⌊p⌋ ⊆ Mp, G(α)=(p, ok, r), reachj(R, G, θ′

1, ⌊r⌋, C′
1, ok, mr), C1

id−→∗C′′
1 and

C′′
1 , p

a
⇝ C′

1, r, ok.
In case (i), from I.H, reachj(R, G, θ′

1, ⌊r⌋, C1, ok, mr) and reachk(R, G, θ2, Mr, C2, ϵ, mq) we
have reachj+k(R, G, θ′

1 ++ θ2, ⌊r⌋, C1; C2, ϵ, mq). Consequently, as θ1 ++ θ2=[α] ++ θ′
1 ++ θ2,

⌊p⌋ ⊆ Mp and R(α)=(p, ϵ, r), from the definition of reach we have reachn+k(R, G, θ1 ++ θ2,

Mp, C1; C2, ϵ, mq), as required.
In case (ii), from I.H, reachj(R, G, θ′

1, ⌊r⌋, C′
1, ok, mr) and reachk(R, G, θ2, Mr, C2, ϵ, mq)

we have reachj+k(R, G, θ′
1 ++ θ2, ⌊r⌋, C′

1; C2, ϵ, mq). On the other hand, as C′′
1 , p

a
⇝ C′

1, r, ok,
we know C′′

1
a−→ C′

1 and thus from the control flow transitions (Fig. 6) we know C′′
1 ; C2

a−→ C′
1; C2.

As such, from C′′
1 , p

a
⇝ C′

1, r, ok we also have C′′
1 ; C2, p

a
⇝ C′

1; C2, r, ok. Similarly, as C1
id−→∗C′′

1 ,
from the control flow transitions we also have C1; C2

id−→∗C′′
1 ; C2. Consequently, as θ1 ++

θ2=[α] ++ θ′
1 ++ θ2, ⌊p⌋ ⊆ Mp, G(α)=(p, ϵ, r), C1; C2

id−→∗C′′
1 ; C2, C′′

1 ; C2, p
a
⇝ C′

1; C2, r, ok and
reachj+k(R, G, θ′

1 ++ θ2, ⌊r⌋, C′
1; C2, ϵ, mq), from the definition of reach we have reachn+k(R,

G, θ1 ++ θ2, Mp, C1; C2, ϵ, mq), as required. ◀

▶ Lemma 31. For all n, R, G, θ, Mp, C1, C2, ϵ, mq, if ϵ ∈ ErExit and reachn(R, G, δ, Mp, C1,

ϵ, mq), then reachn(R, G, δ, Mp, C1 || C2, ϵ, mq).

Proof. We proceed by induction on n.

Case n = 1
We then know that there exists α, p, q, a, C′

1, C′′
1 such that ⌊p⌋ ⊆ Mp, mq ∈⌊q⌋, θ = [α] and

either 1) R(α) = (p, ϵ, q); or 2) G(α) = (p, ϵ, q), C1
id−→∗C′′

1 and C′′
1 , p

a
⇝ C′

1, q, ϵ.
In case (1), from the definition of reach we also have reach1(R, G, [α], Mp, C1 || C2, ϵ,

mq), as required. In case (2), from the control flow transitions (Fig. 6) we know that
whenever C′′

1
a−→ C′

1 then C′′
1 || C2

a−→ C′
1 || C2. As such, from C′′

1 , p
a
⇝ C′

1, q, ϵ we also have
C′′

1 || C2, p
a
⇝ C′

1 || C2, q, ϵ. Similarly, as C1
id−→∗C′′

1 , from the control flow transitions we also
have C1 || C2

id−→∗C′′
1 || C2 Consequently, from the definition of reach we also have reach1(R, G,

[α], Mp, C1 || C2, ϵ, mq), as required.

Case n = k+1

∀R, G, θ, Mp, C1, C2, ϵ, mq.

ϵ ∈ ErExit ∧ reachk(R, G, θ, Mp, C1, ϵ, mq) ⇒ reachk(R, G, θ, Mp, C1 || C2, ϵ, mq) (I.H)

We then know that either 1) there exist α, θ′, p, r such that θ=[α] ++ θ′, R(α)=(p, ok, r),
reachk(R, G, θ′, ⌊r⌋, C1, ϵ, mq) and ⌊p⌋ ⊆ Mp; or 2) there exist α, θ′, p, r, C′

1, C′′
1 , a such that

θ=[α] ++ θ′, G(α)=(p, ok, r), ⌊p⌋ ⊆ Mp, reachk(R, G, θ′, ⌊r⌋, C′
1, ϵ, mq), C1

id−→∗C′′
1 and C′′

1 , p
a
⇝

C′
1, r, ok.

In case (1), from reachk(R, G, θ′, ⌊r⌋, C1, ϵ, mq) and (I.H) we have reachk(R, G, θ′, ⌊r⌋,

C1 || C2, ϵ, mq). Consequently, as R(α)=(p, ok, r) and ⌊p⌋ ⊆ Mp, by definition of reach we
also have reachn(R, G, θ, Mp, C1 || C2, ϵ, mq), as required.
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In case (2), from reachk(R, G, θ′, ⌊r⌋, C′
1, ϵ, mq) and (I.H) we have reachk(R, G, θ′, ⌊r⌋,

C′
1 || C2, ϵ, mq). Moreover, as C′′

1 , p
a
⇝ C′

1, r, ok, we know C′′
1

a−→ C′
1 and thus from the control

flow transitions (Fig. 6) we know C′′
1 || C2

a−→ C′
1 || C2. As such, from C′′

1 , p
a
⇝ C′

1, r, ok we also
have C′′

1 || C2, p
a
⇝ C′

1 || C2, r, ok. Similarly, as C1
id−→∗C′′

1 , from the control flow transitions
we also have C1 || C2

id−→∗C′′
1 || C2. Consequently, as G(α)=(p, ok, r) and ⌊p⌋ ⊆ Mp, from the

definition of reach we also have reachn(R, G, θ, Mp, C1 || C2, ϵ, mq), as required. ◀

▶ Lemma 32. For all n, R, G, θ, Mp, C1, C2, ϵ, mq, if ϵ ∈ ErExit and reachn(R, G, δ, Mp, C2,

ϵ, mq), then reachn(R, G, δ, Mp, C1 || C2, ϵ, mq).

Proof. The proof is analogous to the proof of Lemma 31 and is omitted. ◀

▶ Lemma 33. For all n, k, R1, R2, G1, G2, θ, Mp, mq, C1, C2, ϵ, if R1 ⊆ G2 ∪R2, R2 ⊆ G1 ∪R1,
G1 ∩ G2=∅, reachn(R1, G1, θ, Mp, C1, ϵ, mq), and reachk(R2, G2, θ, Mp, C2, ϵ, mq), then there
exists i such that reachi(R1 ∩ R2, G1 ⊎ G2, θ, Mp, C1 || C2, ϵ, mq).

Proof. By double induction on n and k.

Case n=0, k=0
As we have reach0(R1, G1, θ, Mp, C1, ϵ, mq) and reachk(R2, G2, θ, Mp, C2, ϵ, mq), we then know
that θ=[ ], C1

id−→∗skip, C2
id−→∗skip, ϵ=ok and mq ∈ Mp. On the other hand, as C1

id−→∗skip
and C2

id−→∗skip, from the control flow transitions we have C1 || C2
id−→∗skip. As such, since

θ=[ ], ϵ=ok and mq ∈ Mp, from the definition of reach we have reach0(R1 ∩ R2, G1 ⊎ G2, θ,

Mp, C1 || C2, ϵ, mq), as required.

Case n=0, k ̸=0
This case does not arise as it simultaneously implies that θ = [ ] and θ = [α] ++ θ′ for some
α, θ′ which is not possible.

Case n=1, k=0
This case does not arise as it simultaneously implies that θ = [ ] and θ = [α] for some α

which is not possible.

Case n=1, k=1
As n=k=1, G1 ∩ G2 = ∅, R1 ⊆ G2 ∪ R2 and R2 ⊆ G1 ∪ R1, we then know that there
exist α, p, q, a, C′, C′′ such that ϵ ∈ ErExit, θ = [α], ⌊p⌋ ⊆ Mp, mq ∈ ⌊q⌋, and either: i)
R1(α)=R2(α)=(p, ϵ, q); or ii) R1(α)=G2(α)=(p, ϵ, q), C2

id−→∗C′′ and C′′, p
a
⇝ C′, q, ϵ; or iii)

R2(α) = G1(α)=(p, ϵ, q), C1
id−→∗C′′ and C′′, p

a
⇝ C′, q, ϵ.

In case (i) we have (R1 ∩ R2)(α)=(p, ϵ, q); thus as ϵ ∈ ErExit, θ=[α], ⌊p⌋ ⊆ Mp and
mq ∈ ⌊q⌋, from the definition of reach we have reach1(R1 ∩ R2, G1 ⊎ G2, θ, Mp, C1 || C2, ϵ, mq),
as required.

In case (ii) we have (G1 ⊎ G2)(α)=(p, ϵ, q). On the other hand, from C′′, p
a
⇝ C′, q, ϵ we

know that C′′ a−→ C′ and thus from the control flow transitions we have C1 || C′′ a−→ C1 || C′.
Consequently, from C2, p

a
⇝ C′, q, ϵ we also have C1 || C2, p

a
⇝ C1 || C′, q, ϵ. Similarly, as

C2
id−→∗C′′, from the control flow transitions we also have C1 || C2

id−→∗C1 || C′′. As such, since
ϵ ∈ ErExit, θ = [α], Mp ∈ ⌊p⌋, mq ∈ ⌊q⌋, (G1 ⊎ G2)(α) = (p, ϵ, q), C1 || C2

id−→∗C1 || C′′ and
C1 || C′′, p

a
⇝ C1 || C′, q, ϵ, from the definition of reach we have reach1(R1 ∩ R2, G1 ∪ G2, θ, Mp,

C1 || C2, ϵ, mq), as required.
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The proof of case (iii) is analogous to that of case (ii) and is omitted here.

Case n=1, k=j+1
As we demonstrate below, this case leads to a contradiction. As n=1, we then know that
there exist α such that ϵ ∈ ErExit, θ = [α], and either R1(α)=(p, ϵ, q) or G1(α)=(p, ϵ, q).
Moreover, as k=j+1, we know that there exist p′, r such that either R2(α)=(p′, ok, r) or
G2(α)=(p′, ok, r). This however leads to a contradiction as G1 ∩ G2 = ∅, R1 ⊆ G2 ∪ R2,
R2 ⊆ G1 ∪ R1, ϵ ∈ ErExit and thus ok ̸= ϵ.

Case n ̸=0, k=0
This case does not arise as it simultaneously implies that θ = [ ] and θ = [α] ++ θ′ for some
α, θ′ which is not possible.

Case n=i+1, k=j+1
As G1 ∩ G2 = ∅, R1 ⊆ G2 ∪ R2 and R2 ⊆ G1 ∪ R1, there are now three cases to consider:
i) there exist α, θ′, p, r such that θ=[α] ++ θ′, R1(α)=R2(α)=(p, ok, r), ⌊p⌋ ⊆ Mp, reachi(R1,

G1, θ′, ⌊r⌋, C1, ϵ, mq) and reachj(R2, G2, θ′, ⌊r⌋, C2, ϵ, mq);
ii) there exist α, θ′, p, r, a, C′

1, C′′
1 such that θ=[α] ++ θ′, G1(α)=R2(α)=(p, ok, r), ⌊p⌋ ⊆

Mp, reachi(R1, G1, θ′, ⌊r⌋, C′
1, ϵ, mq), reachj(R2, G2, θ′, ⌊r⌋, C2, ϵ, mq), C1

id−→∗C′′
1 and C′′

1 , p
a
⇝

C′
1, r, ok;

iii) there exist α, θ′, p, r, a, C′
2, C′′

2 such that θ=[α] ++ θ′, G2(α)=R1(α)=(p, ok, r), ⌊p⌋ ⊆
Mp, reachi(R1, G1, θ′, ⌊r⌋, C1, ϵ, mq), reachj(R2, G2, θ′, ⌊r⌋, C′

2, ϵ, mq), C2
id−→∗C′′

2 and C′′
2 , p

a
⇝

C′
2, r, ok.

In case (i), we have (R1 ∩ R2)(α)=(p, ϵ, r). Moreover, as reachi(R1, G1, θ′, ⌊r⌋, C1, ϵ, mq)
and reachj(R2, G2, θ′, ⌊r⌋, C2, ϵ, mq), from the inductive hypothesis we know there exists t such
that reacht(R1 ∩ R2, G1 ⊎ G2, θ′, ⌊r⌋, C1 || C2, ϵ, mq). Consequently, as (R1 ∩ R2)(α)=(p, ϵ, r)
and ⌊p⌋ ⊆ Mp, from the definition of reach we have reacht+1(R1 ∩ R2, G1 ⊎ G2, θ, Mp, C1 || C2,

ϵ, mq), as required.
In case (ii) we have (G1 ⊎ G2)(α)=(p, ϵ, r). On the other hand, from C′′

1 , p
a
⇝ C′

1, r, ϵ we
know that C′′

1
a−→ C′

1 and thus from the control flow transitions we have C′′
1 || C2

a−→ C′
1 || C2.

Consequently, from C′′
1 , p

a
⇝ C′

1, r, ϵ we also have C′′
1 || C2, p

a
⇝ C′

1 || C2, r, ϵ. Similarly, as C1
id−→

∗C′′
1 , from the control flow transitions we also have C1 || C2

id−→∗C′′
1 || C2. Moreover, as reachi(R1,

G1, θ′, ⌊r⌋, C′
1, ϵ, mq) and reachj(R2, G2, θ′, ⌊r⌋, C2, ϵ, mq), from the inductive hypothesis we

know there exists t such that reacht(R1 ∩ R2, G1 ⊎ G2, θ′, ⌊r⌋, C′
1 || C2, ϵ, mq). As such, since

(G1 ⊎ G2)(α)=(p, ϵ, r), ⌊p⌋ ⊆ Mp, C1 || C2
id−→∗C′′

1 || C2 and C′′
1 || C2, p

a
⇝ C′

1 || C2, r, ϵ, from the
definition of reach we have reacht+1(R1 ∩ R2, G1 ⊎ G2, θ, Mp, C1 || C2, ϵ, mq), as required.

The proof of case (iii) is analogous to that of case (ii) and is omitted here. ◀

▶ Lemma 34. For all n, R, R′, G, G′, θ, Mp, M ′
p, mq, C, ϵ, if R′ ≼θ R, G′ ≼θ G M ′

p ⊆ Mp and
reachn(R′, G′, θ, M ′

p, C, ϵ, mq), then reachn(R, G, θ, Mp, C, ϵ, mq).

Proof. By induction on n.

Case n=0
Pick arbitrary R, R′, G, G′, θ, Mp, M ′

p, mq, C, ϵ such that R′ ≼θ R, G′ ≼θ G, M ′
p ⊆ Mp and

reach0(R′, G′, θ, M ′
p, C, ϵ, mq). As we have reach0(R′, G′, θ, M ′

p, C, ϵ, mq), we then know that
θ=[ ], C id−→∗skip, ϵ=ok and mq ∈ M ′

p, and thus (as M ′
p ⊆ Mp) mq ∈ Mp. Consequently, from
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the definition of reach we have reach0(R, G, θ, Mp, skip, ϵ, mq), as required.

Case n=1
Pick arbitrary R, R′, G, G′, θ, Mp, M ′

p, mq, C, ϵ such that R′ ≼θ R, G′ ≼θ G, M ′
p ⊆ Mp and

reach1(R′, G′, θ, M ′
p, C, ϵ, mq). From reach1(R′, G′, θ, M ′

p, C, ϵ, mq) we then know that there
exist α, p, q, a, C′, C′′ such that ϵ ∈ ErExit, θ = [α], ⌊p⌋ ⊆ M ′

p, mq ∈ ⌊q⌋, and either: i)
R′(α)=(p, ϵ, q); or ii) G′(α)=(p, ϵ, q), C id−→∗C′′ and C′′, p

a
⇝ C′, q, ϵ.

In case (i) since α ∈ dom(R′) and α ∈ θ, from R′ ≼θ R we also have R(α)=(p, ϵ, q).
Moreover, since ⌊p⌋ ⊆ M ′

p and M ′
p ⊆ Mp we also have ⌊p⌋ ⊆ Mp. As such, since ϵ ∈ ErExit,

θ = [α] and mq ∈ ⌊q⌋ from the definition of reach we have reach1(R, G, θ, Mp, C, ϵ, mq), as
required.

Similarly, in case (ii) since α ∈ dom(G′) and α ∈ θ, from G′ ≼θ G we also have
G(α)=(p, ϵ, q). Moreover, since ⌊p⌋ ⊆ M ′

p and M ′
p ⊆ Mp we also have ⌊p⌋ ⊆ Mp. As

such, since ϵ ∈ ErExit, θ = [α], mq ∈ ⌊q⌋, C id−→∗C′′ and C′′, p
a
⇝ C′, q, ϵ, from the definition

of reach we have reach1(R, G, θ, Mp, C, ϵ, mq), as required.

Case n=i+1
Pick arbitrary R, R′, G, G′, θ, Mp, M ′

p, mq, C, ϵ such that R′ ≼θ R, G′ ≼θ G, M ′
p ⊆ Mp and

reachn(R′, G′, θ, M ′
p, C, ϵ, mq). From reachn(R′, G′, θ, M ′

p, C, ϵ, mq) we then know that there
exist α, θ′, p, r, a, C′, C′′ such that θ=[α] ++ θ′, ⌊p⌋ ⊆ M ′

p and either:
i) R′(α)=(p, ok, r), and reachi(R′, G′, θ′, ⌊r⌋, C, ϵ, mq); or
ii) G′(α)=(p, ok, r), reachi(R′, G′, θ′, ⌊r⌋, C′, ϵ, mq), C id−→∗C′′ and C′′, p

a
⇝ C′, r, ok.

In case (i) since α ∈ dom(R′) and α ∈ θ, from R′ ≼θ R we also have R(α)=(p, ok, r).
Moreover, since ⌊p⌋ ⊆ M ′

p and M ′
p ⊆ Mp we also have ⌊p⌋ ⊆ Mp. On the other hand,

from reachi(R′, G′, θ′, ⌊r⌋, C, ϵ, mq) and the inductive hypothesis we have reachi(R, G, θ′, ⌊r⌋,

C, ϵ, mq). Consequently, from the definition of reach we have reachn(R, G, θ, M ′
p, C, ϵ, mq), as

required.
Similarly, in case (ii) since α ∈ dom(G′) and α ∈ θ, from G′ ≼θ G we also have

G(α)=(p, ok, r). Moreover, since ⌊p⌋ ⊆ M ′
p and M ′

p ⊆ Mp we also have ⌊p⌋ ⊆ Mp. On
the other hand, from reachi(R′, G′, θ′, ⌊r⌋, C′, ϵ, mq) and the inductive hypothesis we have
reachi(R, G, θ′, ⌊r⌋, C′, ϵ, mq). As such, from the definition of reach we have reachn(R, G, θ,

Mp, C, ϵ, mq), as required. ◀

▶ Theorem 35 (IRG soundness). For all R, G, θ, p, C, ϵ, q, if R, G, θ ⊢ [p] C [ϵ :q] is derivable
using the rules in Fig. 12, then R, G, θ |=[p] C [ϵ :q] holds.

Proof. We proceed by induction on the structure of IRG triples.

Case IRGSkip
Pick arbitrary R, G, p such that R, G, Θ0 ⊢

[
p
]

skip
[
ok : p

]
. It then suffices to show that

reach0(R, G, [ ], ⌊p⌋, skip, ok, mp) for an arbitrary mp ∈ ⌊p⌋, which follows immediately from
Lemma 27.

Case IRGAtom
Pick arbitrary R, G, α, p, q, a, ϵ, mq such that (1) (p, a, ϵ, q)∈Axiom, (2) G(α)=(p, ϵ, q) and
(3) mq ∈⌊q⌋. From (1) and atomic soundness we know (4) ∀m ∈⌊q⌋. ∃mp ∈⌊p⌋. (mp, mq)∈JaKϵ.

Moreover, from the control flow transitions (Fig. 6) we have (5) a id−→∗a and a a−→ skip.
That is, from (4) and (5) we have (6) a id−→∗a and a, p

a
⇝ skip, q, ϵ. There are now two
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cases to consider: i) ϵ∈ErExit; or ii) ϵ=ok. In case (i), since ⌊p⌋ ⊆ ⌊p⌋, from (2), (3), (6),
the assumption of case (i) and the definition of reach we have reach1(R, G, [α], ⌊p⌋, a, ϵ, mq),
as required. In case (ii), from (3) and Lemma 27 we have (7) reach0(R, G, [ ], ⌊q⌋, skip, ok,

mq). As such, since ⌊p⌋ ⊆ ⌊p⌋, from (2), (3), (6), (7), the assumption of case (ii) and the
definition of reach we have reach1(R, G, [α], ⌊p⌋, a, ϵ, mq), as required.

Case IRGSeqEr
Pick arbitrary R, G, Θ, p, q, C1, C2, ϵ such that (1) ϵ ∈ ErExit and (2) R, G, Θ ⊢ [p] C1
[er : q]. Pick an arbitrary θ ∈ Θ and mq ∈ ⌊q⌋; it then suffices to show there exists n∈N
such that reachn(R, G, θ, ⌊p⌋, C1; C2, ϵ, mq). From (2) and the inductive hypothesis we know
there exists n∈N such that (3) reachn(R, G, θ, ⌊p⌋, C1, ϵ, mq). Consequently, from (1), (3)
and Lemma 28 we have reachn(R, G, θ, ⌊p⌋, C1; C2, ϵ, mq), as required.

Case IRGSeq
Pick arbitrary R, G, Θ1, Θ2, p, q, r, C1, C2, ϵ such that (1) R, G, Θ1 ⊢

[
p
]

C1
[
ok : r

]
and

(2) R, G, Θ2 ⊢ [r] C2 [ϵ :q]. Pick an arbitrary mq ∈ ⌊q⌋, θ1 ∈ Θ1 and θ2 ∈ Θ2; it then
suffices to show there exists n∈N such that reachn(R, G, θ1 ++ θ2, ⌊p⌋, C1; C2, ϵ, mq). From
(2) and the inductive hypothesis we know there exists j ∈N such that (3) reachj(R, G, θ2,

⌊r⌋, C2, ϵ, mq). Similarly, from (1) and the inductive hypothesis we know there exists i∈N
such that (4) ∀mr ∈ ⌊r⌋. reachi(R, G, θ1, ⌊p⌋, C1, ok, mr). Consequently, from (3), (4) and
Lemma 30 we have reachi+j(R, G, θ1 ++ θ2, ⌊p⌋, C1; C2, ϵ, mq), as required.

Case IRGLoop1
Pick arbitrary R, G, p, C and mp ∈ ⌊p⌋. It then suffices to show reach0(R, G, [ ], ⌊p⌋, C⋆, ϵ,

mp). This follows immediately from the definition of reach0 and since C⋆ id−→∗skip and mp ∈ ⌊p⌋.

Case IRGLoop2
Pick arbitrary R, G, Θ, p, q, C, ϵ such that (1) R, G, Θ ⊢ [p] C⋆; C [ϵ :q]. Pick an arbitrary
mq ∈q and θ ∈ Θ. It then suffices to show there exists n ∈ N such that reachn(R, G, θ, ⌊p⌋,

C⋆, ϵ, mq). From (1) and the inductive hypothesis we know there exists n ∈ N such that
reachn(R, G, θ, ⌊p⌋, C⋆; C, ϵ, mq). On the other hand, from the control flow transitions (Fig. 6)
we have C⋆ id−→ C⋆; C and thus C⋆ id−→∗C⋆; C. As such, since reachn(R, G, θ, ⌊p⌋, C⋆; C, ϵ, mq),
from Lemma 29 we also have reachn(R, G, θ, ⌊p⌋, C⋆, ϵ, mq), as required.

Case IRGChoice
Pick arbitrary R, G, Θ, p, q, C1, C2, ϵ such that (1) R, G, Θ ⊢ [p] Ci [ϵ :q] for some i ∈ {1, 2}.
Pick an arbitrary mq ∈ q and θ ∈ Θ. It then suffices to show there exists n ∈ N such that
reachn(R, G, θ, ⌊p⌋, C1 + C2, ϵ, mq). From (1) and the inductive hypothesis we know there
exists n ∈ N such that reachn(R, G, θ, ⌊p⌋, Ci, ϵ, mq). On the other hand, from the control
flow transitions (Fig. 6) we have C1 + C2

id−→ Ci and thus C1 + C2
id−→∗Ci. As such, since

reachn(R, G, θ, ⌊p⌋, Ci, ϵ, mq), from Lemma 29 we also have reachn(R, G, θ, ⌊p⌋, C1 +C2, ϵ, mq),
as required.

Case IRGCons
Pick arbitrary R, R′, G, G′, Θ, Θ′, p, p′, q, q′, C, ϵ such that (1) p′ ⊆ p; (2) R′, G′, Θ′ ⊢ [p′] C
[ϵ :q′]; (3) q ⊆ q′; (4) R′ ≼Θ R; (5) G′ ≼Θ G; and (6) Θ ⊆ Θ′. Pick an arbitrary
mq ∈ ⌊q⌋ and θ ∈ Θ. It then suffices to show there exists n ∈N such that reachn(R, G, θ,

⌊p⌋, C, ϵ, mq). As mq ∈ ⌊q⌋, from (3) we also have mq ∈ ⌊q′⌋. Moreover, as θ ∈ Θ, from (6)
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we also have θ ∈ Θ′. As such, from (2) and the inductive hypothesis we know there exists
n∈N such that reachn(R′, G′, θ, ⌊p′⌋, C, ϵ, mq). Moreover, from (1) and the definition of ⌊.⌋
we have (7) ⌊p′⌋ ⊆ ⌊p⌋. On the other hand, since θ ∈ Θ, from (4) and (5) we also have
(8) R′ ≼θ R and G′ ≼θ G. Consequently, from (7), (8) and Lemma 34 we have reachn(R,

G, θ, ⌊p⌋, C, ϵ, mq), as required.

Case IRGComb
Pick arbitrary R, G, Θ1, Θ2, p, q, C, ϵ such that (1) R, G, Θ1 ⊢ [p] C [ϵ :q]; and (2) R, G, Θ2 ⊢ [p]
C [ϵ :q]. Pick an arbitrary mq ∈ ⌊q⌋ and θ ∈ Θ1 ∪ Θ2. It then suffices to show there exists
n∈N such that reachn(R, G, θ, ⌊p⌋, C, ϵ, mq). There are now two cases to consider: 1) θ ∈ Θ1;
or 2) θ ∈ Θ2.

In case (1), from (1) and the inductive hypothesis we know there exists n∈N such that
reachn(R, G, θ, ⌊p⌋, C, ϵ, mq), as required. Similarly, in case (2), from (2) and the inductive
hypothesis we know there exists n∈N such that reachn(R, G, θ, ⌊p⌋, C, ϵ, mq), as required.

Case IRGParEr
Pick arbitrary R, G, Θ, p, q, C1, C2, ϵ such that (1) ϵ∈ErExit, (2) R, G, Θ ⊢ [p] Ci [er : q] for
some i ∈ {1, 2}. and (3) Θ ⊑ dom(G). Pick an arbitrary θ ∈ Θ. From (2) and the inductive
hypothesis we then know there exists i ∈ {1, 2} such that (4) ∀mq ∈ ⌊q⌋. ∃n. reachn(R, G, θ,

⌊p⌋, Ci, ϵ, mq). Pick an arbitrary mq ∈ ⌊q⌋; it then suffices to show there exists n∈N such
that reachn(R, G, θ, ⌊p⌋, C1 || C2, ϵ, mq). As mq ∈ q, from (4) we know there exists n such
that (5) reachn(R, G, θ, ⌊p⌋, Ci, ϵ, mq). Consequently, from (1), (3), (5), Lemma 31 and
Lemma 32 we have reachn(R, G, θ, ⌊p⌋, C1 || C2, ϵ, mq), as required.

Case IRGPar
Pick arbitrary R1, R2, G1, G2, Θ1, Θ2, p, q, C1, C2, ϵ such that (1) R1, G1, Θ1 ⊢ [p] C1 [ϵ :q];
(2) R2, G2, Θ2 ⊢ [p] C2 [ϵ :q]; (3) R1 ⊆ G2 ∪R2; (4) R2 ⊆ G1 ∪R1; and (5) dsj(G1, G2) = ∅.

Pick an arbitrary mq ∈ ⌊q⌋ and θ ∈ Θ1 ∩ Θ2. It then suffices to show there exists n∈N such
that reachn(R1 ∩ R2, G1 ⊎ G2, θ, ⌊p⌋, C1 || C2, ϵ, mq). As θ ∈ Θ1 ∩ Θ2, we also have θ ∈ Θ1 and
θ ∈ Θ2. Consequently, from (1) and the inductive hypothesis we know there exists i∈N such
that (6) reachi(R1, G1, θ, ⌊p⌋, C1, ϵ, mq). Similarly, from (2) and the inductive hypothesis
we know there exists j ∈N such that (7) reachj(R2, G2, θ, ⌊p⌋, C2, ϵ, mq). Consequently, from
(3)–(7) and Lemma 33 we know there exists n∈N such that reachn(R1 ∩ R2, G1 ⊎ G2, θ, ⌊p⌋,

C1 || C2, ϵ, mq), as required. ◀
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