
RUHR-UNIVERSITÄT BOCHUM
Horst Görtz Institute for IT Security

Technical Report TR-HGI-2013-001

Practical Timing Side Channel Attacks

Against Kernel Space ASLR

Ralf Hund, Carsten Willems, Thorsten Holz

Lehrstuhl für Systemsicherheit

Ruhr-Universität Bochum TR-HGI-2013-001
Horst Görtz Institute for IT Security January 18, 2013
D-44780 Bochum, Germany

Practical Timing Side Channel Attacks

Against Kernel Space ASLR

Ralf Hund, Carsten Willems, Thorsten Holz

Abstract

Due to the prevalence of control-flow hijacking attacks, a wide variety of defense methods
to protect both user space and kernel space code have been developed in the past years. A
few examples that have received widespread adoption include stack canaries, non-executable
memory, and Address Space Layout Randomization (ASLR). When implemented correctly
(i.e., a given system fully supports these protection methods and no information leak exists),
the attack surface is significantly reduced and typical exploitation strategies are severely
thwarted. All modern desktop and server operating systems support these techniques and
ASLR has also been added to different mobile operating systems recently.

In this paper, we study the limitations of kernel space ASLR against a local attacker
with restricted privileges. We show that an adversary can implement a generic side channel
attack against the memory management system to deduce information about the privileged
address space layout. Our approach is based on the intrinsic property that the different
caches are shared resources on computer systems. We introduce three implementations of
our methodology and show that our attacks are feasible on four different x86-based CPUs
(both 32- and 64-bit architectures) and also applicable to virtual machines. As a result,
we can successfully circumvent kernel space ASLR on systems both running Windows and
Linux. Furthermore, we also discuss mitigation strategies against our attacks, and propose
and implement a defense solution with negligible performance overhead.

1 Introduction

Modern operating systems employ a wide variety of methods to protect both user and kernel space
code against memory corruption attacks that leverage vulnerabilities such as stack overflows [1],
integer overflows [2], and heap overflows [3]. Control-flow hijacking attempts pose a significant
threat and have attracted a lot of attention in the security community due to their high relevance in
practice. Even nowadays, new vulnerabilities in applications, drivers, or operating system kernels
are reported on a regular basis. To thwart such attacks, many mitigation techniques have been
developed over the years. A few examples that have received widespread adoption include stack
canaries [4], non-executable memory (e.g., No eXecute (NX) bit and Data Execution Prevention
(DEP) [5]), and Address Space Layout Randomization (ASLR) [6–8].

Especially ASLR plays an important role in protecting computer systems against software
faults. The key idea behind this technique is to randomize the system’s virtual memory layout
either every time a new code execution starts (e.g., upon process creation or when a driver is
loaded) or on each system reboot. While the initial implementations focused on randomizing user
mode processes, modern operating systems such as Windows 7 randomize both user and kernel
space. ASLR introduces diversity and randomness to a given system, which are both appeal-
ing properties to defend against attacks: an attacker that aims to exploit a memory corruption
vulnerability does not know any memory addresses of data or code sequences which are needed
to mount a control-flow hijacking attack. Even advanced exploitation techniques like return-to-
libc [9] and return-oriented programming (ROP) [10] are hampered since an attacker does not
know the virtual address of memory locations to which she can divert the control flow. As noted
above, all major operating systems such as Windows, Linux, and Mac OS X have adopted ASLR

2

and also mobile operating systems like Android and iOS have recently added support for this
defense method [7, 11–13].

Broadly speaking, successful attacks against a system that implements ASLR rely on one of
three conditions:

1. In case not all loaded modules and other mapped memory regions have been protected with
ASLR, an attacker can focus on these regions and exploit the fact that the system has not
been fully randomized. This is an adoption problem and we expect that in the near future
all memory regions (both in user space and kernel space) will be fully randomized [14, 15].
In fact, Windows 7/8 already widely supports ASLR and the number of applications that
do not randomize their libraries is steadily decreasing.

2. If some kind of information leakage exists that discloses memory addresses [16–18], an at-
tacker can obtain the virtual address of specific memory areas. She might use this knowledge
to infer additional information that helps her to mount a control-flow hijacking attack. While
such information leaks are still available and often used in exploits, we consider them to be
software faults that will be fixed to reduce the attack surface [19,20].

3. An attacker might attempt to perform a brute-force attack [21]. In fact, Shacham et al.
showed that user mode ASLR on 32-bit architectures only leaves 16 bit of randomness,
which is not enough to defeat brute-force attacks. However, such brute-force attacks are
not applicable for kernel space ASLR. More specifically, if an attacker wants to exploit a
vulnerability in kernel code, a wrong offset will typically lead to a complete crash of the
system and thus an attacker has only one attempt to perform an exploit. Thus, brute-force
attacks against kernel mode ASLR are not feasible in practice.

In combination with DEP, a technique that enforces the W ⊕ X (Writable xor eXecutable)
property of memory pages, ASLR significantly reduces the attack surface. Under the assumption
that the randomization itself cannot be predicted due to implementation flaws (i.e., not fully
randomizing the system or existing information leaks), typical exploitation strategies are severely
thwarted.

In this paper, we study the limitations of kernel space ASLR against a local attacker with
restricted privileges. We introduce a generic attack for systems running on the Intel Instruction
Set Architecture (ISA). More specifically, we show how a local attacker with restricted rights can
mount a timing-based side channel attack against the memory management system to deduce
information about the privileged address space layout. We take advantage of the fact that the
memory hierarchy present in computer systems leads to shared resources between user and kernel
space code that can be abused to construct a side channel. In practice, timing attacks against a
modern CPU are very complicated due to the many performance optimizations used by current
processors such as hardware prefetching, speculative execution, multi-core architectures, or branch
prediction that significantly complicate timing measurements [22]. Previous work on side-channels
attacks against CPUs [23–25] focused on older processors without such optimization and we had
to overcome many challenges to solve the intrinsic problems related to modern CPU features [22].

We have implemented three different attack strategies that are capable of successfully recon-
structing (parts of) the kernel memory layout. We have tested these attacks on different Intel and
AMD CPUs (both 32- and 64-bit architectures) on machines running either Windows 7 or Linux.
Furthermore, we show that our methodology also applies to virtual machines. As a result, an ad-
versary learns precise information about the (randomized) memory layout of the kernel. With that
knowledge, she is enabled to perform control-flow hijacking attacks since she now knows where
to divert the control flow to, thus overcoming the protection mechanisms introduced by kernel
space ASLR. Furthermore, we also discuss mitigation strategies and show how the side channel we
identified as part of this work can be prevented in practice with negligible performance overhead.

In summary, the contributions of this paper are the following:
• We present a generic attack to derandomize kernel space ASLR that relies on a side channel

based on the memory hierarchy present in computer systems, which leads to timing differ-
ences when accessing specific memory regions. Our attack is applicable in scenarios where
brute-force attacks are not feasible and we assume that no implementation flaws exist for

3

ASLR. Because of the general nature of the approach, we expect that it can be applied to
many operating systems and a variety of hardware architectures.

• We present three different approaches to implement our methodology. We successfully tested
them against systems running Windows 7 or Linux on both 32-bit and 64-bit Intel and
AMD CPUs, and also the virtualization software VMware. As part of the implementation,
we reverse-engineered an undocumented hash function used in Intel Sandybridge CPUs to
distribute the cache among different cores. Our attack enables a local user with restricted
privileges to determine the virtual memory address of key kernel memory locations within a
reasonable amount of time, thus enabling ROP attacks against the kernel.

• We discuss several mitigation strategies that defeat our attack. The runtime overhead of
our preferred solution is not noticeable in practice and successfully prevents the timing side
channel attacks discussed in this paper. Furthermore, it can be easily adopted by OS vendors.

2 Technical Background

We review the necessary technical background information before introducing the methodology
behind our attack.

2.1 Address Space Layout Randomization

As explained above, ASLR randomizes the system’s virtual memory layout either every time a new
code execution starts or every time the system is booted [6–8,26]. More specifically, it randomizes
the base address of important memory structures such as for example the code, stack, and heap.
As a result, an adversary does not know the virtual address of relevant memory locations needed
to perform a control-flow hijacking attack (i.e., the location of shellcode or ROP gadgets). All
major modern operating systems have implemented ASLR. For example, Windows implements
this technique since Vista in both user and kernel space [12], Linux implements it with the help
of the PaX patches [7], and MacOS ships with ASLR since version 10.5. Even mobile operating
systems such as Android [11] and iOS [13] perform this memory randomization nowadays.

The security gain of the randomization is twofold: First, it can protect against remote attacks,
such as hardening a networking daemon against exploitation. Second, it can also protect against
local attackers by randomizing the privileged address space of the kernel. This should hinder
exploitation attempts of implementation flaws in kernel or driver code that allow a local application
to elevate its privileges, a prevalent problem [27,28]. Note that since a user mode application has
no means to directly access the kernel space, it cannot determine the base addresses kernel modules
are loaded to: every attempt to access kernel space memory from user mode results in an access
violation, and thus kernel space ASLR effectively hampers local exploits against the OS kernel or
drivers.

Windows Kernel Space ASLR In the following we describe the kernel space ASLR imple-
mentation of Windows (both 32-bit and 64-bit). The information presented here applies to Vista,
Windows 7, and Windows 8. We obtained this information by reverse-engineering the correspond-
ing parts of the operating system code.

During the boot process, the Windows loader is responsible for loading the two core components
of the OS, the kernel image and the hardware abstraction layer (HAL), which is implemented as
a separate module. At first, the Windows loader allocates a sufficiently large address region (the
kernel region) for the kernel image and the HAL. The base address of this region is constant
for a given system. Then, it computes a random number ranging from 0 to 31. This number is
multiplied by the page size (0x1000) and added to the base address of the reserved region to form
a randomized load address. Furthermore, the order in which the kernel and the HAL are loaded
is also randomized. Both components are always loaded consecutively in memory, there is no gap
in between. This effectively yields 64 different slots to which the kernel image and the HAL each

4

32 slots

… … ntoskrnl
…

HAL

32 slots

… … ntoskrnl

kernel region (6mb, 3 large pages)

(1)

(2)

…
HAL

Figure 1: ASLR for Windows kernel region (not proportional). Slot and load order (either (1)
or (2)) are chosen randomly.

can be loaded (see also Figure 1). In summary, the formula for computing the kernel base address
is as follows:

k base = kernel region + (r1 ∗ 0x1000) + (r2 ∗ hal size),

where r1 ∈ {0 . . . 31} and r2 ∈ {0, 1} are random numbers within the given ranges. Kernel and
HAL are commonly mapped using so called large pages (2 MB) which improves performance
by reducing the duration of page walks; both components usually require three large pages (=
6 MB). An interesting observation is that the randomization is already applied to the physical
load addresses of the image and that for the kernel region, the formula

virtual address = 0x80000000 + physical address

holds. The lower 31 bits of virtual kernel addresses are thus identical to the physical address.
Again, this is only true for addresses in the kernel region and does not generally apply to kernel
space addresses.

Once the kernel is initialized, all subsequent drivers are loaded by the kernel’s driver load
routine MmLoadSystemImage. This mechanism contains a different ASLR implementation to ran-
domize the base address of drivers in the subroutine MiReserveDriverPtes. The process works
as follows: the kernel first reserves a memory region of 2 MB using standard 4 KB sized pages
(a driver region). It then randomly chooses one out of 64 page-aligned start slots in this region
where the first driver is loaded to. All subsequent drivers are then appended, until the end of the
2 MB region is hit, which is when the next driver is mapped to the beginning of the region (i.e.,
a wrap-around occurs). In case a region is full, a new 2MB driver region with a random start
slot is allocated. For session-wide drivers such as win32k.sys, a similar randomization with 64
slots for each driver image is applied in a dedicated session driver region. We observed that the
loading order of drivers is always the same in practice.

2.2 Memory Hierarchy

There is a natural trade-off between the high costs of fast computer memory and the demand
for large (but inexpensive) memory resources. Hence, modern computer systems are operating on
hierarchical memory that is built from multiple stages of different size and speed. Contemporary
hierarchies range from a few very fast CPU registers over different levels of cache to a huge and
rather slow main memory. Apparently, with increasing distance to the CPU the memory gets
slower, larger, and cheaper.

We focus on the different caches that are used to speed up address translation and memory
accesses for code and data. As illustrated in Figure 2, each CPU core typically contains one
dedicated Level 1 (L1) and Level 2 (L2) cache and often there is an additional Level 3 (L3) shared

5

cache (also called last level cache (LLC)). On level 1, instructions and data are cached into distinct
facilities (ICACHE and DCACHE), but on higher stages unified caches are used. The efficiency
of cache usage is justified by the temporal and spatial locality property of memory accesses [29].
Hence, not only single bytes are cached, but always chunks of adjacent memory. The typical size
of such a cache line on x86/x64 is 64 bytes.

One essential question is where to store certain memory content in the caches and how to
locate it quickly on demand. All described caches operate in an n-way set associative mode. Here,
all available slots are grouped into sets of the size n and each memory chunk can be stored in all
slots of one particular set. This target set is determined by a bunch of cache index bits that are
taken from the memory address. As an example, consider a 32-bit address and a typical L3 cache
of 8 MB that is 16-way set associative. It consists of (8, 192 ∗ 1, 024)/64 = 131, 072 single slots
that are grouped into 131, 072/16 = 8, 192 different sets. Hence, 13 bits are needed to select the
appropriate set. Since the lower 6 bits (starting with bit 0) of each address are used to select one
particular byte from each cacheline, the bits 18 to 6 determine the set. The remaining upper 13
bits form the address tag, that has to be stored with each cache line for the later lookup.

One essential consequence of the set associativity is that memory addresses with identical index
bits compete against the available slots of one set. Hence, memory accesses may evict and replace
other memory content from the caches. One common replacement strategy is Least Recently Used
(LRU), in which the entry which has not been accessed for the longest time is replaced. Since
managing real timestamps is not affordable in practice, the variant Pseudo-LRU is used: an
additional reference bit is stored with each cacheline that is set on each access. Once all reference
bits of one set are enabled, they are all cleared again. If an entry from a set has to be removed,
an arbitrary one with a cleared reference bit is chosen.

Virtual Memory and Address Translation Contemporary operating systems usually work
on paged virtual memory instead of physical memory. The memory space is divided into equally
sized pages that are either regular pages (e.g., with a size of 4 KB), or large pages (e.g., 2 or 4 MB).
When accessing memory via virtual addresses (VA), they first have to be translated into physical
addresses (PA) by the processor’s Memory Management Unit (MMU) in a page walk : the virtual
address is split into several parts and each part operates as an array index for certain levels of
page tables. The lowest level of the involved paging structures (PS), the Page Table Entry (PTE),
contains the resulting physical frame number. For large pages, one level less of PS is needed since a
larger space of memory requires less bits to address. In that case, the frame number is stored one
level higher in the Page Directory Entry (PDE). In case of Physical Address Extension (PAE) [30]
or 64-bit mode, additional PS levels are required, i.e. the Page Directory Pointer (PDP) and the
Page Map Level 4 (PML4) structures. Appendix A provides more information and examples of
such address resolutions for PAE systems.

In order to speed up this address translation process, resolved address mappings are cached
in Translation Lookaside Buffers (TLBs). Additionally, there often are dedicated caches for the
involved higher level PS [31]. Depending on the underlying system, the implementation of these
translation caches differs a lot. Current x86/x64 systems usually have two different levels of TLB:
the first stage TLB0 is split into one for data (DTLB) and another for instructions (ITLB),
and the second stage TLB1 is used for both. Further, the TLBs are often split into one part
for regular pages and another for large pages. In order to speed up this address translation
process, already resolved address mappings are cached in Translation Lookaside Buffers (TLBs).
Additionally, there often are dedicated caches for the involved higher level PS [31]. Depending
on the underlying system, the implementation of these address translation caches differs a lot.
Contemporary x86/x64 systems usually have two different levels of TLB: the first stage TLB0 is
split into one for data (DTLB) and another for instructions (ITLB), and the second stage TLB1
is used for both. Further, the TLBs are often split into one part for regular pages and another
for large pages. In order to speed up this address translation process, already resolved address
mappings are cached in Translation Lookaside Buffers (TLBs). Additionally, there often are
dedicated caches for the involved higher level PS [31]. Depending on the underlying system, the

6

ITLB

CPU

ICACHE DCACHE

ITLB0
ITLB
DTLB0

PML4/PDP/
PDE Cache

L2 Cache

L3 Cache

Physical Memory

MMU

Unified TLB1

4

1
0

3

5

>
1

0
0

>
1

0
0

1

6

Figure 2: Intel i7 memory hierarchy plus clock latency for the relevant stages (based on [32,33])

implementation of these address translation caches differs a lot. Contemporary x86/x64 systems
usually have two different levels of TLB: the first stage TLB0 is split into one for data (DTLB)
and another for instructions (ITLB), and the second stage TLB1 is used for both. Further, the
TLBs are often split into one part for regular pages and another for large pages.

Even with TLBs and PS caches, the address translation takes some clock cycles, during which
the resulting physical address is not available yet. As an effect, the system has to wait for the
address translation before it can check the tag values of the caches. Therefore, lower caches (mostly
only the L1 cache) are virtually indexed, but physically tagged. This means that the cache index
is taken from the virtual address but the stored tag values from the physical one. With that
approach, the corresponding tag values already can be looked up and then quickly compared once
the physical address is available.

Figure 2 illustrates all the different caching facilities of the Intel i7 processor. The vertical
arrows are labeled with the amount of clock cycles that are normally required to access the
particular stages [32,33]. The dashed arrow (pointing from the TLB1 to the DCACHE) indicates
that PS are not only cached in the TLB or PML4/PDP/PDE caches, but may also reside as
regular data within the DCACHE or higher level unified caches.

An essential part of each virtual memory system is the page fault handler (PFH). It is invoked
if a virtual address cannot be resolved, i.e., the page walk encounters invalid PS. This may happen
for several reasons (e.g., the addressed memory region has been swapped out or the memory is
accessed for the first time after its allocation). In such cases, the error is handled completely by
the PFH. Although this happens transparently, the process induces a slight time delay. Besides
translation information, the PS also contain several protection flags (e.g., to mark memory as
non-executable or to restrict access to privileged code only). After successful translation, these
flags are checked against the current system state and in case of a protection violation, the PFH is
invoked as well. In that case an access violation exception is generated that has to be caught and
handled by the executing process. Again, a slight time delay may be observable between accessing
the memory and the exception being delivered to the exception handler.

7

3 Timing Side Channel Attacks

Based on this background information, we can now explain how time delays introduced by the
memory hierarchy enable a side channel attack against kernel-level ASLR.

3.1 Attacker Model

We focus in the following on local attacks against kernel space ASLR: we assume an adversary
who already has restricted access to the system (i.e., she can run arbitrary applications) but does
not have access to privileged kernel components and thus cannot execute privileged (kernel mode)
code. We also assume the presence of a user mode-exploitable vulnerability within kernel or driver
code, a common problem [27]. The exploitation of this software fault requires to know (at least
portions of) the kernel space layout since the exploit at some point either jumps to an attacker
controlled location or writes to an attacker controlled location to divert the control flow.

Since the entire virtual address space is divided in both user and kernel space, an attacker
might attempt to directly jump to a user space address from within kernel mode in an exploit,
thus circumventing any kernel space ASLR protections. However, this is not always possible since
the correct user space might not be mapped at the time of exploitation due to the nature of
the vulnerability [14]. Furthermore, this kind of attack is rendered impossible with the introduc-
tion of the Supervisor Mode Execution Protection (SMEP) feature of modern CPUs that disables
execution of user space addresses in kernel mode [34].

We also assume that the exploit uses ROP techniques due to the W ⊕X property enforced in
modern operating systems. This requires to know a sufficiently large amount of executable code
in kernel space to enable ROP computations [10, 35]. Schwartz et al. showed that ROP payloads
can be built automatically for 80% of Linux programs larger than 20 KB [36]. Further, we assume
that the system fully supports ASLR and that no information leaks exist that can be exploited.
Note that a variety of information leaks exist for typical operating systems [18], but these types of
leaks stem from shortcomings and inconsequences in the actual implementation of the specific OS.
Developers can fix these breaches by properly adjusting their implementation. Recently, Giuffrida
et al. [37] argued that kernel information leakage vulnerabilities are hard to fix. While we agree
that it is not trivial to do so, we show that even in the absence of any leak, we can still derandomize
kernel space ASLR.

One of our attacks further requires that the userland process either has access to certain APIs
or gains information about the physical frame mapping of at least one page in user space. However,
since this prerequisite holds only for one single attack – which further turns out to be our least
effective one – we do not consider it in the general attacker model but explain its details only in
the corresponding Section 4.1.

In summary, we assume that the system correctly implements ASLR (i.e., the complete system
is randomized and no information leaks exist) and that it enforces the W ⊕X property. Hence,
all typical exploitation strategies are thwarted by the implemented defense mechanisms.

3.2 General Approach

In this paper, we present generic side channels against processors for the Intel ISA that enable
a restricted attacker to deduce information about the privileged address space by timing certain
operations. Such side channels emerge from intricacies of the underlying hardware and the fact that
parts of the hardware (such as caches and physical memory) are shared between both privileged and
non-privileged code. Note that all the approaches that we present in this paper are independent of
the underlying operating system: while we tested our approach mainly on Windows 7 and Linux,
we are confident that the attacks also apply for other versions of Windows or even other operating
systems. Furthermore, our attacks work on both 32- and 64-bit systems.

The methodology behind our timing measurements can be generalized in the following way:
At first, we attempt to set the system in a specific state from user mode. Then we measure the
duration of a certain memory access operation. The time span of this operation then (possibly)

8

reveals certain information about the kernel space layout. Our timing side channel attacks can be
split into two categories:
• L1/L2/L3-based Tests: These tests focus on the L1/L2/L3 CPU caches and the time

needed for fetching data and code from memory.
• TLB-based Tests: These tests focus on TLB and PS caches and the time needed for

address translation.
To illustrate the approach, consider the following example: we make sure that a privileged

code portion (such as the operating system’s system call handler) is present within the caches by
executing a system call. Then, we access a designated set of user space addresses and execute
the system call again. If the system call takes longer than expected, then the access of user space
addresses has evicted the system call handler code from the caches. Due to the structure of modern
CPU caches, this reveals parts of the physical (and possibly virtual) address of the system call
handler code as we show in our experiments.

Accessing Privileged Memory As explained in Section 2.2, different caching mechanisms
determine the duration of a memory access:
• The TLB and PS caches speed up the translation from the virtual to the physical address.
• In case no TLB exists, the PS entries of the memory address must be fetched during the

page walk. If any of these entries are present in the normal L1/L2/L3 caches, then the page
walk is accelerated in a significant (i.e., measurable) way.

• After the address translation, the actual memory access is faster if the target data/code can
be fetched from the L1/L2/L3 caches rather than from the RAM.

While it is impossible to access kernel space memory directly from user mode, the nature
of the cache facilities still enables an attacker to indirectly measure certain side-effects. More
precisely, she can directly access a kernel space address from user mode and measure the duration
of the induced exception. The page fault will be faster if a TLB entry for the corresponding page
was present. Additionally, even if a permission error occurs, this still allows to launch address
translations and, hence, generate valid TLB entries by accessing privileged kernel space memory
from user mode.

Further, an attacker can (to a certain degree) control which code or data regions are accessed
in kernel mode by forcing fixed execution paths and known data access patterns in the kernel. For
example, user mode code can perform a system call (sysenter) or an interrupt (int). This will
force the CPU to cache the associated handler code and data structures (e.g., IDT table) as well
as data accessed by the handler code (e.g., system call table). A similar effect can be achieved to
cache driver code and data by indirectly invoking driver routines from user mode.

Note that the x86/x64 instruction set also contains a number of instructions for explicit cache
control (e.g., invlpg, invd/wbinvd, clflush, or prefetch) [30]. However, these instructions are
either privileged and thus cannot be called from user mode, or they cannot be used with kernel
space addresses from user mode. Hence, none of these instructions can be used for our purposes.
As a result, we must rely on indirect methods as explained in the previous paragraphs.

3.3 Handling Noise

While performing our timing measurements we have to deal with different kinds of noise that
diminish the quality of our data if not addressed properly. Some of this noise is caused by the
architectural peculiarities of modern CPUs [22]: to reach a high parallelism and work load, CPU
developers came up with many different performance optimizations like hardware prefetching,
speculative execution, multi-core architectures, or branch prediction. We have adapted our mea-
suring code to take the effects of these optimizations into account. For example, we do not test
the memory in consecutive order to avoid being influenced by memory prefetching. Instead, we
use access patterns that are not influenced by these mechanisms at all. Furthermore, we have to
deal with the fact that our tool is not the only running process in the observed system: the thread
scheduler of the underlying operating system periodically and, if required, also preemptively in-
terrupts our code and switches the execution context. If we are further running inside a virtual

9

Method Requirements Results Environment Success

Cache Probing large pages or PA of evic-
tion buffer, partial informa-
tion about kernel region lo-
cation

ntoskrnl.exe and hal.sys all X

Double Page Fault none allocation map, several drivers all but AMD X
Cache Preloading none win32k.sys all X

Table 1: Summary of timing side channel attacks against kernel space ASLR on Windows.

machine, there is even more context switching when a transition between the virtual machine
monitor and the VM (or between different VMs) takes place. Finally, since all executed code is
operating on the same hardware, also the caches have to be shared to some extent.

As mentioned above, our approach is based on two key operations: (a) set the system into a
specific state and (b) measure the duration of a certain memory access operation. Further, these
two operations are performed for each single memory address that is probed. Finally, the complete
experiment is repeated multiple times until consistent values have been collected. While it is now
possible — and highly probable — that our code is interrupted many times while probing the
complete memory, it is also very likely that the low-level two step test operations can be executed
without interruption. The mean duration of these two steps depends on the testing method we
perform, but even in the worst case it takes no more than 5,000 clock cycles. Since modern
operating systems have time slices of at least several milliseconds [38,39], it is highly unlikely that
the scheduler interferes with our measurements. Accordingly, while there may be much noise due
to permanent interruption of our experiments, after a few iterations we will eventually be able
to test each single memory address without interruption. This is sufficient since we only need
minimal measurement values, i.e., we only need one measurement without interruption.

4 Implementation and Results

We now describe three different implementations of timing side channel attacks that can be applied
independently from each other. The goal of each attack is to precisely locate some of the currently
loaded kernel modules from user mode by measuring the time needed for certain memory accesses.
Note that an attacker can already perform a ROP-based attack once she has derandomized the
location of a few kernel modules or the kernel [35,36].

Depending on the randomness created by the underlying ASLR implementation, the first attack
might still require partial information on the location for the kernel area. For the Windows ASLR
implementation (see Section 2.1), this is not the case since only 64 slots are possible of the kernel.
The first attack requires either the presence of two large pages or the knowledge of the physical
address of a single page in user space. Our second attack has no requirements. However, due
to the way the AMD CPU that we used during testing behaves in certain situations, this attack
could not be mounted on this specific CPU. The third attack has no requirements at all.

We have evaluated our implementation on the 32-bit and 64-bit versions of Windows 7 Enter-
prise and Ubuntu Desktop 11.10 on the following (native and virtual) hardware architectures to
ensure that they are commonly applicable on a variety of platforms:

1. Intel i7-870 (Nehalem/Bloomfield, Quad-Core)
2. Intel i7-950 (Nehalem/Lynnfield, Quad-Core)
3. Intel i7-2600 (Sandybridge, Quad-Core)
4. AMD Athlon II X3 455 (Triple-Core)
5. VMWare Player 4.0.2 on Intel i7-870 (with VT-x)
Table I provides a high-level overview of our methods, their requirements, and the obtained

results. We implemented an exploit for each of the three attacks.

10

For the sake of simplicity, all numbers presented in the remainder of this section were taken
using Windows 7 Enterprise 32-bit. Note that we also performed these tests on Windows 7 64-bit
and Ubuntu Desktop (32-bit and 64-bit) and can confirm that they work likewise. The Ubuntu
version we used did not employ kernel space ASLR yet, but we were able to determine the location
of the kernel image from user space. In general, this does not make any difference since the attacks
also would have worked in the presence of kernel space ASLR.

In the following subsections, we explain the attacks and discuss our evaluation results.

4.1 First Attack: Cache Probing

Our first method is based on the fact that multiple memory addresses have to be mapped into
the same cache set and, thus, compete for available slots. This can be utilized to infer (parts of)
virtual or physical addresses indirectly by trying to evict them from the caches in a controlled
manner. More specifically, our method is based on the following steps: first, the searched code
or data is loaded into the cache indirectly (e.g., by issuing an interrupt or calling sysenter).
Then certain parts of the cache are consecutively replaced by accessing corresponding addresses
from a user-controlled eviction buffer, for which the addresses are known. After each replacement,
the access time to the searched kernel address is measured, for example by issuing the system
call again. Once the measured time is significantly higher, one can be sure that the previously
accessed eviction addresses were mapped into the same cache set. Since the addresses of these
colliding locations are known, the corresponding cache index can be obtained and obviously this
is also a part of the searched address.

Several obstacles have to be addressed when performing these timing measurements in practice.
First, the correct kind of memory access has to be performed: higher cache levels are unified (i.e.,
there are no separate data and instruction caches), but on lower levels either a memory read/write
access or an execution has to be used in order to affect the correct cache type. Second, accessing
the colliding addresses only once is not enough. Due to the Pseudo-LRU algorithm it may happen
that not the searched address is evicted, but one from the eviction buffer. Therefore, it is necessary
to access each of the colliding addresses twice. Note that it is still possible that code within another
thread or on other CPUs concurrently accesses the search address in the meantime, setting its
reference bit that way. To overcome this problem, all tests have to be performed several times to
reduce the influence of potential measuring errors and concurrency.

More serious problems arise due to the fact that the cache indexes on higher levels are taken
from the physical instead of the virtual addresses. In our experiments, the eviction buffer is
allocated from user mode and, hence, only its virtual address is known. While it is still possible
to locate the colliding cacheset, no information can be gathered about the corresponding physical
addresses. In general, even if the physical address of the searched kernel location is known, this
offers no knowledge about its corresponding virtual address. However, the relevant parts of the
virtual and physical address are identical for the kernel region of Windows (see Section 2.1).
Hence, all the relevant bits of the virtual address can be obtained from the physical address.

Cache probing with the latest Intel CPUs based on the Sandybridge [30] architecture is signif-
icantly harder, even if the attacker has a contiguous region of memory for which all corresponding
physical addresses are known. These processors employ a distributed last level cache [30] that is
split into equally sized cache slices and each of them is dedicated to one CPU core. This approach
increases the access bandwidth since several L3 cache accesses can be performed in parallel. In
order to uniformly distribute the accesses to all different cache slices, a hash function is used
that is not publicly documented. We thus had to reconstruct this hash function in a black-box
manner before cache probing can be performed, since otherwise it is unknown which (physical)
addresses are mapped into which cache location. We explain our reverse-engineering approach
and the results in a side note before explaining the actual evaluation results for our first attack.

11

PA

h2 =

h1 =

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Cache index Block offset Input to hash function for slice index

h = (h1, h2)
h1 = b31 ⊕ b30 ⊕ b29 ⊕ b27 ⊕ b25 ⊕ b23 ⊕ b21 ⊕ b19 ⊕ b18

h2 = b31 ⊕ b29 ⊕ b28 ⊕ b26 ⊕ b24 ⊕ b23 ⊕ b22 ⊕ b21 ⊕ b20 ⊕ b19 ⊕ b17

Figure 3: Results for the reconstruction of the undocumented Sandybridge hash function.

4.1.1 Side Note: Sandybridge Hash Function

In order to reconstruct the Sandybridge hash function, we utilized the Intel i7-2600 processor.
This CPU has an 8 MB L3 cache and 4 cores, resulting in 2 MB L3 slices each. Hence, the hash
function has to decide between 4 different slices (i.e., resulting in 2 output bits). Since our testing
hardware had 4 GB of physical memory, we have reconstructed the hash function for an input of
32 bits. In case of larger physical memory, the same method can be applied to reverse the influence
of the upper bits as well.

We started with the reasonable assumption that L3 cachelines on this CPU still consist of 64
bytes. Hence, the lowest 6 bits of each address operate as an offset and, therefore, do not contribute
as input to the hash function. Accordingly, we assumed a function h : {0, 1}32−6 → {0, 1}2.

In order to learn the relationship between the physical addresses and the resulting cache slices,
we took one arbitrary memory location and an additional eviction buffer of 8 MB and tried to
determine the colliding addresses within (i.e., those which are mapped into the same cacheset of
the same cache slice). Since the L3 cache operates on physical addresses, the eviction buffer had
to be contiguous. Therefore, we used our own custom driver for this experiment.

Performance optimization features of modern CPUs like hardware prefetching, speculative
execution, and branch prediction make it impossible to directly identify single colliding addresses.
Therefore, we performed a two-step experiment: (1) we identified eviction buffer regions of adjacent
memory addresses that collide with the probe address and then (2) we located the particular
colliding addresses within these regions. We have performed these tests several hundred times
with different physical addresses in order to gain variety in the test data. As a result of each single
test we got a tuple (p, CA = {ca1, ca2, ...}) whereas p is the used probe address and each cai is a
colliding address from our eviction buffer. By manually comparing those tuples (p, CA) and (p’,
CA’) with a hamming distance of one between p and p’, we were able to learn the influence of
particular bits on the colliding addresses from CA and CA’.

In the end we were able to fully reconstruct the hashing function h that decides which cache
slice is used for a given address. It turned out that only the bits 31 to 17 are considered as input
values. Each cache slice operates as a separate smaller 2 MB cache, whereas the address bits 16
to 6 constitute as the cache index (11 bits are necessary to address all sets of such a 2 MB cache).
Figure 3 shows how the 32 bits of a physical address are used as inputs to the hash function, cache
index, and block offset.

4.1.2 Evaluation Results

We evaluated cache probing on all of our testing machines. We assume that the base address of
the kernel region (see kernel base from Section 2.1) is known. This is a reasonable assumption in
practice since this information can be reliably extracted using the method presented in Section 4.2.
In Windows this address actually is constant for a particular system.

Figure 4 shows the correlation of the different parts of the virtual and physical address inside the
kernel region. In essence, bits 16 to 12 of the kernel’s base address are randomized in Windows’

12

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

cacheline L3 cache index

identical for virtual and physical address (in kernel_region)

randomized

PA

 Kernel PA/VA

Kernel Base VA

tag

zero kernel_region base address

=

=

Figure 4: Correlation of different memory addresses

ASLR implementation and must be known by an attacker. Since the PA and VA for bits 30 to 0
are identical in the kernel region, it is also sufficient to know bits 16 to 12 of the physical address.
This bit range overlaps with the L3 cache index. In other words: if the L3 cache index is known,
then an attacker can tell the virtual base address of the kernel.

We used cache probing to extract parts of the physical address of the system call handler
KiFastCallEntry. The offset from this function to the kernel’s base address is static and known.
If we know the address of this function, then we also know the base address of the kernel (and
HAL).

We performed the following steps for all cache sets i:
1. Execute sysenter with an unused syscall number.
2. Evict cache set i using the eviction buffer.
3. Execute sysenter again and measure the duration.
The unused syscall number minimizes the amount of executed kernel mode code since it causes

the syscall handler to immediately return to user mode with an error. Step 1 makes sure that the
syscall handler is present in the caches. Step 2 tries to evict the syscall handler code from the cache.
Step 3 measures if the eviction was successful. If we hit the correct set i, then the second sysenter

takes considerably longer and from i we can deduce the lower parts of the physical address of the
syscall handler. Along with the address of the kernel region, this yields the complete virtual
address of the syscall handler, and thus the base of the entire kernel and the HAL.

We performed extensive tests on the machine powered by an Intel i7-870 (Bloomfield) processor.
We executed the cache probing attack 180 times; the machine was rebooted after each test and
we waited for a random amount of time before the measurements took place to let the system
create artificial noise. Figure 5 shows the cache probing measurements. The x-axis consists of
the different L3 cache sets (8, 192 in total) and the y-axis is the duration of the second system
call handler invocation in CPU clocks, after the corresponding cache set was evicted. The vertical
dashed line indicates the correct value where the system call handler code resides. There is a
clear cluster of high values at this dashed line, which can be used to extract the correct cache set
index and thus parts of the physical (and possibly virtual) address. We were able to successfully
determine the correct syscall handler address in each run and there were no false positives. The
test is fast and generally takes less than one second to finish.

4.1.3 Discussion

For successful cache probing attacks, an adversary needs to know the physical addresses of the
eviction buffer, at least those bits that specify the cache set. Furthermore, she somehow has to find
out the corresponding virtual address of the kernel module from its physical one. This problem is
currently solved by using large pages for the buffer, since under Windows those always have the
lowest bits set to 0. Therefore, their first byte always has a cache index of 0 and all following ones
can be calculated from that. However, this method does not work with Sandybridge processors,
since there we need to know the complete physical address as input to the hash function that
decides on which cache slice an address is mapped. Furthermore, allocating large pages requires
a special right under Windows (MEM LARGE PAGES), which first has to be acquired somehow. One
possible way to overcome this problem is to exploit an application that already possesses this right.

13

Figure 5: Cache probing results for Intel i7-870 (Bloomfield)

In case of non-Sandybridge processors, large pages are not needed per se. It is only necessary
to know the physical start address of the eviction buffer. More generically, it is only necessary
to know parts of the physical base address of one user space address, since this can then be used
to align the eviction buffer. Our experiments have shown that these parts of the physical base
address of the common module ntdll, which is always mapped to user space, is always constant
(even after reboots). Though the concrete address varies depending on the hardware and loaded
drivers and is thus difficult to compute, the value is deterministic.

4.2 Second Attack: Double Page Fault

The second attack allows us to reconstruct the allocation of the entire kernel space from user mode.
To achieve this goal, we take advantage of the behavior of the TLB cache. When we refer to an
allocated page, we mean a page that can be accessed without producing an address translation
failure in the MMU; this also implies that the page must not be paged-out.

The TLB typically works in the following way: whenever a memory access results in a successful
page walk due to a TLB miss, the MMU replaces an existing TLB entry with the translation result.
Accesses to non-allocated virtual pages (i.e., the present bit in the PDE or PTE is set to zero)
induce a page fault and the MMU does not create a TLB entry. However, when the page translation
was successful, but the access permission check fails (e.g., when kernel space is accessed from user
mode), a TLB entry is indeed created. Note that we observed this behavior only on Intel CPUs
and within the virtual machine. In contrast, the AMD test machine acted differently and never
created a TLB entry in the mentioned case. The double page fault method can thus not be applied
on our AMD CPU.

The behavior on Intel CPUs can be exploited to reconstruct the entire kernel space from user
mode as follows: for each kernel space page p, we first access p from user mode. This results in a
page fault that is handled by the operating system and forwarded to the exception handler of the
process. One of the following two cases can arise:
• p refers to an allocated page: since the translation is successful, the MMU creates a TLB

entry for p although the succeeding permission check fails.

14

Figure 6: Example for double page fault measurements for an Intel i7-950 (Lynnfield) CPU.

• p refers to an unallocated page: since the translation fails, the MMU does not create a TLB
entry for p.

Directly after the first page fault, we access p again and measure the time duration until this
second page fault is delivered to the process’s exception handler. Consequently, if p refers to an
allocated kernel page, then the page fault will be delivered faster due to the inherent TLB hit.

Due to the many performance optimizations of modern CPUs and the concurrency related to
multiple cores, a single measurement can contain noise and outliers. We thus probe the kernel
space multiple times and only use the observed minimal access time for each page to reduce
measurement inaccuracies. Figure 6 shows measurement results on an Intel i7-950 (Lynnfield)
CPU for eight measurements, which we found empirically to yield precise results. The dots show
the minimal value (in CPU clocks) observed on eight runs. The line at the bottom indicates which
pages are actually allocated in kernel space; a black bar means the page is allocated. As one can
see, there is a clear correlation between the timing values and the allocation that allows us to infer
the kernel memory space.

We developed an algorithm that reconstructs the allocation from the timing values. In the
simplest case, we can introduce a threshold value that differentiates allocated from unallocated
pages. In the above example, we can classify all timing values below 5, 005 clocks as allocated
and all other values as unallocated as indicated by the dashed line. This yields a high percent-
age of correct classifications. Depending on the actual CPU model, this approach might induce
insufficient results due to inevitable overlap of timing values and thus other reconstruction algo-
rithms are necessary. We implemented a second approach that aims at detecting transitions from
allocated to unallocated memory by looking at the pitch of the timing curve, a straightforward
implementation of a change point detection (CPD) algorithm [40]. Further measurement results
and figures displaying the results are shown in Appendix B.

4.2.1 Evaluation Results

We evaluated our double page fault based approach on the three Intel CPUs and the virtual
machine, Table 2 shows a summary of the results. We employed the threshold algorithm on CPU

15

CPU model Correctness Runtime
(1) i7-870 (Bloomfield) 96.42% 17.27 sec (8 it.)
(2) i7-950 (Lynnfield) 99.69% 18.36 sec (8 it.)
(3) i7-2600 (Sandybr.) 94.92% 65.41 sec (32 it.)
(4) VMware on (1) 94.98% 72.93 sec (32 it.)

Table 2: Results for double page fault timings

(1) and the CPD algorithm on platforms (2)–(4). The numbers shown in the table are the average
out of ten runs for each machine. Between each run, we rebooted the operating system to make
sure that the kernel space allocation varies. We took a snapshot of the allocation with the help
of a custom driver before we started the measurements to obtain a ground truth of the memory
layout. Since the allocation might change while the measurements are running, the correctness
slightly decreases because of this effect. Nevertheless, we were able to successfully reconstruct the
state of at least 94.92% of all pages in the kernel space on each machine. With the help of memory
allocation signatures (a concept we introduce next) such a precision is easily enough to exactly
reconstruct the location of many kernel components.

The average runtime of the measurements varies between 18 and 73 seconds and is therefore
within reasonable bounds. One iteration is one probe of the entire kernel space with one access
per page. As noted above, we empirically found that more than eight iterations on Nehalem CPUs
do not produce better results. For Sandybridge and VMware, more iterations yielded more precise
results, mainly due to the fact that there was more noise in the timings.

4.2.2 Memory Allocation Signatures

The double page fault timings yield an estimation for the allocation map of the kernel space, but
do not determine at which concrete base addresses the kernel and drivers are loaded to. However,
the allocation map can be used, for example, to spot the kernel region (i.e., the memory area in
which the kernel and HAL are loaded) due to the large size of this region, which can be detected
easily.

One could argue that, since the virtual size of each driver is known, one could find driver load
addresses by searching for allocated regions which are exactly as big as the driver image. This
does not work for two reasons: first, Windows kernel space ASLR appends most drivers in specific
memory regions and thus there is usually no gap between two drivers (see Section 2.1). Second,
there are gaps of unallocated pages inside the driver images as we explain next.

In contrast to the kernel region, Windows drivers are not mapped using large pages but using
the standard 4 KB page granularity. Code and data regions of drivers are unpageable by default.
However, it is possible for developers to mark certain sections inside the driver as pageable to
reduce the memory usage of the driver. Furthermore, drivers typically have a discardable INIT

section, that contains the initialization code of the driver which only needs to be executed once.
All code pages in the INIT section are freed by Windows after the driver is initialized. Code
or data in pageable sections that are never or rarely used are likely to be unallocated most of
the time. Along with the size and location of the INIT section, this creates a memory allocation
signature for each driver in the system. We can search for these signatures in the reconstructed
kernel space allocation map to determine the actual load addresses of a variety of drivers.

We evaluated the signature matching on all three Intel CPUs and the virtual machine. At
first, we took a snapshot of the kernel space with the help of a custom driver. Then we created
signatures for each loaded driver. A signature essentially consists of a vector of boolean values
that tell whether a page in the driver was allocated (true) or paged-out (false). Note that this
signature generation step can be done by an attacker in advance to build a database of memory
allocation signatures.

In the next step, we rebooted the machine, applied the double page fault approach, and then
matched the signatures against the reconstructed kernel space allocation map. To enhance the

16

CPU model Matches Code size
(1) i7-870 (Bloomfield) 21 7,431 KB
(2) i7-950 (Lynnfield) 9 4,184 KB
(3) i7-2600 (Sandybridge) 5 1,696 KB
(4) VMware on (1) 18 7,079 KB
(1) with signatures of (2) 9 2,312 KB

Table 3: Evaluation of allocation signature matching

precision during the signature matching phase, we performed two optimizations: first, we rule out
signatures that contain less than five transitions from allocated to paged-out memory to avoid
false positives. Second, we require a match of at least 96% for a signature, which we empirically
found to yield the best results.

The results are shown in Table 3. On machine (1), the signature matching returns the exact
load addresses of 21 drivers (including big common drivers such as win32k.sys and ndis.sys); 141
drivers are loaded in total and 119 signatures were ruled out because they held too few transitions.
Hence only one signature had a too low match ratio. All identified base addresses are correct,
there are no false positives. Most of the other drivers could not be located since they are too small
and their signatures thus might produce false positives. The 21 located drivers hold 7, 431 KB of
code, which is easily enough to mount a full ROP attack as explained previously [35, 36]. Similar
results hold for the other CPUs.

To assess whether the signatures are also portable across different CPUs, we took the signatures
generated on machine (2) and applied them to machine (1). The operating system and driver
versions of both machines are identical. This yields 9 hits with 2, 312 KB of code. This experiment
shows that the different paging behavior in drivers is not fundamentally affected by differing
hardware configurations.

4.2.3 Discussion

Although the double page fault measurements only reveal which pages are allocated and which are
not, this still can be used to derive precise base addresses as we have shown by using the memory
allocation signature matching. Furthermore, the method can be used to find large page regions
(especially the kernel region).

4.3 Third Attack: Address Translation Cache Preloading

In the previous section we have described an approach to reconstruct the allocation map of the
complete kernel space. While it is often possible to infer the location of certain drivers from that,
without driver signatures it only offers information about the fact that there is something located
at a certain memory address and not what. However, if we want to locate a certain driver (i.e.,
obtain the virtual address of some piece of code or data from its loaded image), we can achieve
this with our third implementation approach: first we flush all caches (i.e., address translation and
instruction/data caches) to start with a clean state. After that, we preload the address translation
caches by indirectly calling into kernel code, for example by issuing a sysenter operation. Finally,
we intentionally generate a page fault by jumping to some kernel space address and measure the
time that elapses between the jump and the return of the page fault handler. If the faulting
address lies in the same memory range as the preloaded kernel memory, a shorter time will elapse
due to the already cached address translation information.

Flushing all caches from user mode cannot be done directly since the invlpg and invd/wbinvd

are privileged instructions. Thus, this has to be done indirectly by accessing sufficiently many
memory addresses to evict all other data from the cache facilities. This is trivial for flushing the
address translation and L1 caches, since only a sufficient number of virtual memory addresses
have to be accessed. However, this approach is not suitable for L2/L3 caches, since these are
physically indexed and we do not have any information about physical addresses from user mode.

17

Anyway, in practice the same approach as described above works if the eviction buffer is chosen
large enough. We have verified for Windows operating systems that large parts of the physical
address bits of consecutively allocated pages are in successive order as well. Presumably this
is done for performance reasons to optimally distribute the data over the caches and increase
the effectiveness of the hardware prefetcher. As our experiments have shown, even on Sandybrige
CPUs one virtually consecutive memory buffer with a size twice as large as the L3 cache is sufficient
to completely flush it.

During our experiments we tried to locate certain system service handler functions within
win32k.sys. To avoid cache pollution and obtain the best measuring results, we chose the system
service bInitRedirDev, since it only executes 4 bytes of code before returning. As a side effect,
we also located the System Service Dispatch/Parameter Tables (SSDT and SSPT) within that
module, since these tables are accessed internally on each service call.

In our implementation we first allocated a 16 MB eviction buffer and filled it with RET instruc-
tions. Then for each page p of the complete kernel space memory (or a set of selected candidate
regions), we performed three steps:

1. Flush all (address translation-, code- and unified) caches by calling into each cacheline (each
64th byte) of the eviction buffer.

2. Perform sysenter to preload address translation caches.
3. Call into some arbitrary address of page p and measure time until page fault handler returns.

4.3.1 Evaluation Results

The steps described above have to be repeated several times to diminish the effects of noise and
measuring inaccuracies. It turned out that the necessary amount of iterations strongly depends
on the underlying hardware. Empirically we determined that around 100 iterations are needed on
Nehalem, 60 on AMD, and only 30 on Sandybridge to reliably produce precise results. Inside the
virtual machine, we had to further increase the number of iterations due to the noise that was
generated by the virtual machine monitor. Nevertheless, by increasing it to 100 (the VM operated
on the Sandybridge processor) this timing technique also worked successfully inside a virtualized
environment.

We learned that the noise could be additionally reduced by taking different addresses randomly
from each probed page for each iteration. In addition, we found out that using relative time
differences was less error-prone than using absolute values. Therefore, we enhanced our testing
procedure by performing the measuring twice for each page: the first time like shown above and the
second time without performing the syscall in between. By calculating the relative time difference
between both timing values, we were able to measure the speedup of address translation caches
for our particular scenario. Figure 7 shows an extract of our measuring results for the Intel i7-950
(Lynnfield) CPU. The x-axis displays the probed virtual address, while the y-axis displays the
relative time difference in clock cycles. The two vertical lines indicate those locations where the
searched system service handler function resp. the SSDT/SSPT were located. As one can easily
see those memory regions have much higher timing difference values than the others. Though
there was a lot of noise within the data, our algorithms were able to locate those regions correctly
on all of our testing environments.

While this method only reveals the memory page of the searched kernel module, it is still
possible to reconstruct its full virtual address. This can be achieved by obtaining the relative
address offset of the probed code/data by inspecting the image file of the module. As the measuring
operates on a page granularity, it is best suited to locate kernel modules that reside in regular
pages. Nevertheless, with the described difference technique, also large page memory regions can
be identified that contain certain code or data. Obviously, the exact byte locations within such
regions cannot be resolved and, therefore, we have used it to locate win32k.sys in our experiments.
Due to its size, this module is sufficient to perform arbitrary ROP attacks [35,36].

18

0x9624e3c0 0x962c84e0 0x96342600 0x963bc720 0x96436840
virtual address

0

50

100

150

200

250

300

cl
o
ck

s

Figure 7: Extract of cache preloading measurements

4.3.2 Discussion

Our third proposed method has no remarkable limitations. However, depending on the size of
the probed memory range and the amount of necessary test iterations, it may take some time to
complete. The probing of a 3 MB region (this is the size of win32k.sys) for one iteration takes
around 27 seconds. Therefore, if an attacker has employed the double page fault method to identify
an appropriate candidate region and then performs 30 iterations on a Sandybridge processor, it
takes 13 minutes to perform the complete attack. However, since the relative offset of the searched
kernel function can previously be obtained from the image file, the probed memory region can be
reduced drastically, enabling to perform the test in a minute or less. If the location of candidate
regions is not possible, our attack will still work but take longer time. Furthermore, the technique
operates on page granularity. Hence, drivers residing in large pages can be located, but their exact
byte offset cannot be identified without additional techniques.

5 Mitigation Approaches

Since the methods presented in the previous section can be used to break current ASLR imple-
mentations, mitigation strategies against our attacks are necessary. To that end, there are several
options for CPU designers and OS vendors.

The root cause of our attacks is the concurrent usage of the same caching facilities by privileged
and non-privileged code and data, i.e., the memory hierarchy is a shared resource. One solution
to overcome this problem would be to split all caches and maintain isolated parts for user and
kernel mode, respectively. Obviously, this imposes several performance drawbacks since additional

19

checks had to be performed in several places and the maximum cache size would be cut in half for
both separate caches (or the costs increase).

A related mitigation attempt is to forbid user mode code to resolve kernel mode addresses.
One way to achieve this is to modify the global descriptor table (GDT), setting a limit value
such that the segments used in non-privileged mode only span the user space. However, doing so
would render some CPU optimization techniques useless that apply when the flat memory model
is used (in which all segments span the complete memory). Furthermore, the complete disabling
of segmentation on 64-bit architectures makes this mitigation impossible. Another option would
be to suppress the creation of TLB entries on successful address translation if an access violation
happens, like it is done with the tested AMD CPU. Nevertheless, the indirect loading of kernel
code, data, or address mappings through system calls still cannot be avoided with this method.

Current ASLR implementations (at least under Windows) do not fully randomize the address
space, but randomly choose from 64 different memory slots. By utilizing the complete memory
range and distributing all loaded modules to different places, it would be much harder to perform
our attacks. Especially when dealing with a 64-bit memory layout, the time needed for measuring
is several magnitudes higher and would increase the time needed to perform some of our attacks.
Nevertheless, scattering allocated memory over the full address range would significantly degrade
system performance since much more paging structures would be needed and spatial locality would
be destroyed to a large extent. Furthermore, we expect that our double page fault attack even
then remains practical. Due to the huge discrepancy between the 64-bit address space and the
used physical memory, the page tables are very sparse (especially those one higher levels). Since
page faults can be used to measure the depth of the valid page tables for a particular memory
address, only a very small part of the complete address space actually has to be probed.

We have proposed a method to identify mapped kernel modules by comparing their memory
allocation patterns to a set of known signatures. This is possible because parts of these modules
are marked pageable or discardable. If no code or data could be paged-out (or even deallocated)
after loading a driver, it would be impossible to detect them with our signature approach. Again,
applying this protection would decrease the performance, because unpageable memory is a scarce
and critical system resource.

One effective mitigation technique is to modify the execution time of the page fault handler:
if there is no correlation between the current allocation state of a faulting memory address and
the observable time for handling that, the timing side channel for address translation vanishes.
This would hinder our attacks from Sections 4.2 and 4.3. We have implemented one possible
implementation for this method and verified that our measuring no longer works. To that end, we
have hooked the page fault handler and normalized its execution time if unprivileged code raises a
memory access violation on kernel memory. In that case we enforce the execution to always return
back to user mode after a constant amount of clock cycles. For that purpose we perform a bunch
of timing tests in advance to measure the timing differences for memory accesses to unallocated
and allocated (for both regular and large) pages. Inside the hooked page fault handler we delay
execution for the appropriate amount of time, depending on the type of memory that caused the
exception. Since this happens only for software errors – or due to active probing – there is no
general impact on system performance. Note that modifying the page fault handler renders our
attack infeasible, but there might be other side channels an attacker can exploit to learn more
about the memory layout of the kernel.

Even with normalizing the page fault handling time, our cache probing attack remains feasible.
However, cache probing has one fundamental shortcoming: it only reveals information about
physical addresses. If the kernel space randomization is only applied to virtual addresses, then
knowing physical addresses does not help in defeating ASLR.

The kernel (or an underlying hypervisor) may also try to detect suspicious access patterns from
usermode to kernelspace, for example by limiting the amount of usermode page faults for kernel
space addresses. Such accesses are necessary for two of the previously described methods. While
our current implementations of these attacks could be detected without much effort that way, we
can introduce artificial sleep times and random access patterns to mimicry benign behavior. In
the end, this would lead to an increased runtime of the exploits.

20

In case the attacks are mounted from within a VMM, the hypervisor might also provide the
VM with incorrect information on the true CPU model and features, for example by modifying
the cpuid return values. However, this might have undesirable side-effects on the guest operating
system which also needs this information for optimizing cache usage. Furthermore, the architec-
tural parameters of the cache (such as size, associativity, use of slice-hashing, etc.) can be easily
determined from within the VM using specific tests.

6 Related Work

Timing and side channel attacks are well-know concepts in computer security and have been used to
attack many kinds of systems, among others cryptographic implementations [41–43], OpenSSL [44,
45], SSH sessions [46], web applications [47, 48], encrypted VoIP streams [49, 50], and virtual
machine environments [51–53].

Closely related to our work is a specific kind of these attacks called cache games [24,25,54,55].
In these attacks, an adversary analyzes the cache access of a given system and deduces information
about current operations taking place. The typical target of these attacks are cryptographic
implementations: while the CPU performs encryption or decryption operations, an adversary
infers memory accesses and uses the obtained information to derive the key or related information.
In a recent work, Gullasch et al. showed for example how an AES key can be recovered from the
OpenSSL 0.9.8n implementation [24] and Zhang et al. introduced similar attacks in a cross-VM
context [53].

We apply the basic principle behind cache attacks in our work and introduce different ways
how this general approach can be leveraged to obtain information about the memory layout of
a given system. Previous work focused on attacks against the instruction/data caches and not
on the address translation cache, which is conceptually different. We developed novel approaches
to attack this specific aspect of a computer system. Furthermore, all documented cache attacks
were implemented either for embedded processors or for older processors such as Intel Pentium
M (released in March 2003) [24], Pentium 4E (released in February 2004) [25], or Intel Core Duo
(released in January 2006) [23]. In contrast, we focus on the latest processor architectures and need
to solve many obstacles related to modern performance optimizations in current CPUs [22]. To the
best of our knowledge, we are the first to present timing attacks against ASLR implementations
and to discuss limitations of kernel space ASLR against a local attacker.

7 Conclusion and Future Work

In this paper, we have discussed a generic, timing-based side channel attack against kernel space
ASLR. Such side channels emerge from intricacies of the underlying hardware and the fact that
parts of the hardware (such as caches and physical memory) are shared between both privileged
and non-privileged mode. We have presented three different instances of this methodology that
utilize timing measures to precisely infer the address locations of mapped kernel modules. We
successfully tested our implementation on four different CPUs and within a virtual machine and
conclude that these attacks are feasible in practice. As a result, a local, restricted attacker can
infer valuable information about the kernel memory layout and bypass kernel space ASLR.

As part of our future work, we plan to apply our methods to other operating systems such as
Mac OS X and more kinds of virtualization software. We expect that they will work without many
adoptions since the root cause behind the attacks lies in the underlying hardware and not in the
operating system. We further plan to test our methods on other processor architectures (e.g., on
ARM CPUs to attack ASLR on Android [11]). Again, we expect that timing side channel attacks
are viable since the memory hierarchy is a shared resource on these architectures as well.

Another topic for future work is the identification of methods to obtain the physical address of
a certain memory location from user mode. One promising method would be to identify certain
data structures that are always mapped to the same physical memory and use the technique of

21

cache probing with them. First experiments have shown that certain parts of mapped system
modules are constant for a given system (e.g., the physical base address of ntdll.dll). Another
possibility is to instrument the characteristics of the Sandybridge hash function to locate colliding
memory locations and infer the bits of their physical address.

References

[1] Aleph One, “Smashing the Stack for Fun and Profit,” Phrack Magazine, vol. 49, no. 14, 1996.

[2] blexim, “Basic Integer Overflows,” Phrack Magazine, vol. 60, no. 10, 2002.

[3] M. Conover, “w00w00 on Heap Overflows,” 1999.

[4] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang, “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks,”
in USENIX Security Symposium, 1998.

[5] Microsoft, “Data Execution Prevention (DEP),” http://support.microsoft.com/kb/875352/EN-US/,
2006.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation: An Efficient Approach to Combat
a Broad Range of Memory Error Exploits,” in USENIX Security Symposium, 2003.

[7] PaX Team, “Address Space Layout Randomization (ASLR),” http://pax.grsecurity.net/docs/aslr.txt.

[8] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent Runtime Randomization for Security,” in Sym-
posium on Reliable Distributed Systems (SRDS), 2003.

[9] Solar Designer, “”return-to-libc” attack,” Bugtraq, 1997.

[10] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls
(on the x86),” in ACM Conference on Computer and Communications Security (CCS), 2007.

[11] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev, “Address Space Randomization for Mobile
Devices,” in ACM Conference on Wireless Network Security (WiSec), 2011.

[12] M. Russinovich, “Inside the Windows Vista Kernel: Part 3,” http://technet.microsoft.com/en-us/
magazine/2007.04.vistakernel.aspx, 2007.

[13] Charles Miller and Dion Blazakis and Dino Dai Zovi and Stefan Esser and Vincenzo Iozzo and Ralf-
Phillipp Weinmann, iOS Hacker’s Handbook. John Wiley & Sons, Inc., 2012, p. 211.

[14] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard: Lightweight Kernel Protection
Against return-to-user Attacks,” in USENIX Security Symposium, 2012.

[15] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating system security through
efficient and fine-grained address space randomization,” in USENIX Security Symposium, 2012.

[16] T. Durden, “Bypassing PaX ASLR Protection,” Phrack Magazine, vol. 59, no. 9, 2002.

[17] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter, “Breaking the
Memory Secrecy Assumption,” in European Workshop on System Security (EuroSec), 2009.

[18] M. Jurczyk, “Windows Security Hardening Through Kernel Address Protection,” http://j00ru.
vexillium.org/?p=1038, 2011.

[19] P. Akritidis, “Cling: A Memory Allocator to Mitigate Dangling Pointers,” in USENIX Security
Symposium, 2010.

[20] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy Bounds Checking: An Efficient and
Backwards-Compatible Defense against Out-of-Bounds Errors,” in USENIX Security Symposium,
2009.

[21] H. Shacham, M. Page, B. Paff, E. jin Goh, N. Modadugu, and D. Boneh, “On the Effectiveness
of Address-Space Randomization,” in ACM Conference on Computer and Communications Security
(CCS), 2004.

[22] K. Mowery, S. Keelveedhi, and H. Shacham, “Are AES x86 Cache Timing Attacks Still Feasible?” in
ACM Cloud Computing Security Workshop (CCSW), 2012.

[23] O. Aciiçmez, B. B. Brumley, and P. Grabher, “New Results on Instruction Cache Attacks,” in Work-
shop on Cryptographic Hardware and Embedded Systems (CHES), 2010.

[24] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games – Bringing Access-Based Cache Attacks on
AES to Practice,” in IEEE Symposium on Security and Privacy, 2011.

22

http://support.microsoft.com/kb/875352/EN-US/
http://pax.grsecurity.net/docs/aslr.txt
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.aspx
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.aspx
http://j00ru.vexillium.org/?p=1038
http://j00ru.vexillium.org/?p=1038

[25] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache Attacks on AES, and Countermeasures,”
J. Cryptol., vol. 23, no. 2, Jan. 2010.

[26] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address Space Layout Permutation (ASLP): Towards
Fine-Grained Randomization of Commodity Software,” in Annual Computer Security Applications
Conference (ACSAC), 2006.

[27] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical Study of Operating Systems
Errors,” in ACM Symposium on Operating Systems Principles (SOSP), 2001.

[28] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the Reliability of Commodity Operating
Systems,” ACM Trans. Comput. Syst., vol. 23, no. 1, 2005.

[29] W. A.-K. Abu-Sufah, “Improving the Performance of Virtual Memory Computers,” Ph.D. disserta-
tion, University of Illinois at Urbana-Champaign, 1979.

[30] Intel Corporation, “Intel: 64 and IA-32 Architectures Software Developer’s Manual,” 2007, http:
//www.intel.com/products/processor/manuals/index.htm.

[31] Intel, “TLBs, Paging-Structure Caches, and Their Invalidation,” http://www.intel.com/content/
www/us/en/processors/architectures-software-developer-manuals.html.

[32] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach. El-
sevier, Inc., 2012, p. 118.

[33] D. Levinthal, “Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon 5500 proces-
sors,” http://software.intel.com/sites/products/collateral/hpc/vtune/performance analysis guide.
pdf.

[34] Invisible Things Lab, “From Slides to Silicon in 3 Years!” http://theinvisiblethings.blogspot.de/
2011/06/from-slides-to-silicon-in-3-years.html, 2011.

[35] R. Hund, T. Holz, and F. C. Freiling, “Return-Oriented Rootkits: Bypassing Kernel Code Integrity
Protection Mechanisms,” in USENIX Security Symposium, 2009.

[36] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening made easy,” in USENIX
Security Symposium, 2011.

[37] Giuffrida, Cristiano and Kuijsten, Anton and Tanenbaum, Andrew S., “Enhanced Operating System
Security Through Efficient and Fine-grained Address Space Randomization,” in Proceedings of the
21st USENIX conference on Security symposium, ser. Security’12. USENIX Association, 2012.

[38] J. Aas, “Understanding the Linux 2.6.8.1 CPU Scheduler,” http://joshaas.net/linux/linux cpu
scheduler.pdf, 2005.

[39] Microsoft, “Description of Performance Options in Windows,” http://support.microsoft.com/kb/
259025/en-us, 2007.

[40] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application. Prentice-
Hall, 1993.

[41] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Sys-
tems,” in International Crytology Conference (CRYPTO), 1996.

[42] M. Weiss, B. Heinz, and F. Stumpf, “A cache timing attack on aes in virtualization environments,”
in Financial Cryptography and Data Security (FC), 2012.

[43] O. Aciiçmez, “Yet another MicroArchitectural Attack:: exploiting I-Cache,” in ACM Workshop on
Computer Security Architecture (CSAW), 2007.

[44] O. Aciiçmez, W. Schindler, and Çetin Kaya Koç, “Improving Brumley and Boneh timing attack on
unprotected SSL implementations,” in ACM Conference on Computer and Communications Security
(CCS), 2005.

[45] D. Brumley and D. Boneh, “Remote Timing Attacks are Practical,” in USENIX Security Symposium,
2003.

[46] D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of Keystrokes and Timing Attacks on SSH,”
in USENIX Security Symposium, 2001.

[47] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-Channel Leaks in Web Applications: A Reality
Today, a Challenge Tomorrow,” in IEEE Symposium on Security and Privacy, 2010.

[48] E. W. Felten and M. A. Schneider, “Timing Attacks on Web Privacy,” in ACM Conference on
Computer and Communications Security (CCS), 2000.

[49] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson, “Spot Me if You Can:

23

http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://theinvisiblethings.blogspot.de/2011/06/from-slides-to-silicon-in-3-years.html
http://theinvisiblethings.blogspot.de/2011/06/from-slides-to-silicon-in-3-years.html
http://joshaas.net/linux/linux_cpu_scheduler.pdf
http://joshaas.net/linux/linux_cpu_scheduler.pdf
http://support.microsoft.com/kb/259025/en-us
http://support.microsoft.com/kb/259025/en-us

Uncovering Spoken Phrases in Encrypted VoIP Conversations,” in IEEE Symposium on Security and
Privacy, 2008.

[50] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose, “Phonotactic Reconstruction of En-
crypted VoIP Conversations: Hookt on Fon-iks,” in IEEE Symposium on Security and Privacy, 2011.

[51] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds,” in ACM Conference on Computer and Commu-
nications Security (CCS), 2009.

[52] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone: Co-residency detection in the cloud
via side-channel analysis,” in IEEE Symposium on Security and Privacy, 2011.

[53] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM Side Channels and Their Use to
Extract Private Keys,” in ACM Conference on Computer and Communications Security (CCS), 2012.

[54] J. Bonneau and I. Mironov, “Cache-Collision Timing Attacks Against AES,” in Cryptographic Hard-
ware and Embedded Systems (CHES), 2006.

[55] C. Percival, “Cache Missing for Fun and Profit,” http://www.daemonology.net/
hyperthreading-considered-harmful/, 2005.

A Address Resolution

Figure 8 illustrates the address resolution for regular pages (upper part) and large pages (lower
part) on PAE systems. Notice that in the first case, the resulting PTE points to one single frame.
In the second case, the PDE points to the first one of a set of adjacent frames, that in sum span
the same size as a large page.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PDP

PDE

PTE

Frame
PDP Tables

Page Directories Page Tables

32 bit Virtual Address – Regular Page

2 9 9 12

Physical Memory

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PDE

1st Frame

Page Directories

32 bit Virtual Address – Large Page

2 9 21

Physical Memory

… PDP Tables

PDP

Figure 8: Address resolution for regular and large pages on PAE systems

24

http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/hyperthreading-considered-harmful/

B Double Page Fault

Figure 9 shows the double page fault measurements on an Intel i7-870 (Bloomfield) processor. It is
not possible to use a simple threshold value to tell apart allocated from unallocated pages without
introducing a large amount of faulty results. In the zoomed version in Figure 10, one can see that
it is still possible to distinguish unallocated from unallocated pages. Note that this figure uses
lines instead of dots to stress the focus on transitions from high to low values (or vice versa). We
therefore use a change point detection (CPD) algorithm [40] in this case.

Figure 9: Double page fault measurements on Intel i7-870 (Bloomfield) processor

25

Figure 10: Zoomed-in view of Figure 9

26

	Introduction
	Technical Background
	Address Space Layout Randomization
	Memory Hierarchy

	Timing Side Channel Attacks
	Attacker Model
	General Approach
	Handling Noise

	Implementation and Results
	First Attack: Cache Probing
	Side Note: Sandybridge Hash Function
	Evaluation Results
	Discussion

	Second Attack: Double Page Fault
	Evaluation Results
	Memory Allocation Signatures
	Discussion

	Third Attack: Address Translation Cache Preloading
	Evaluation Results
	Discussion

	Mitigation Approaches
	Related Work
	Conclusion and Future Work
	Address Resolution
	Double Page Fault

