In Memory Safety, The Soundness Of Attacks Is What Matters*

“Fither mathematics is too big for the human mind
or the human mind is more than a machine.” —Kurt Gdodel

Julien Vanegue

September 4, 2020

Position Statement Large scale software bug detection
employs fuzz testing, static analysis and other techniques
to identify thousands of new software bugs every year
[2] [3] [4] [5]. An unfortunate trend across many large organi-
zations is that the number of bugs found grows faster than the
number of bugs fixed. Failure to determine whether bug con-
ditions are sufficient to represent a security vulnerability can
result in incorrect prioritization of work. Therefore, software
vendors must grow their investment in attack automation to
determine real risk and decide which bugs to fix first.

Not All Bugs Are Attacks You are at the bottom of
two seemingly endless stairs. 1 On one side lie all falsely ex-
ploitable bugs, such as buffer overflows with narrow overwrite
and restricted byte value range, bugs with data misalignment
and overly small injection payload, for which cache desyn-
chronisation, address unpredictability, or low attack band-
width fail to constitute any realistic leverage for attack. On
the other side, the way leads to all falsely unezploitable bugs:
Read-only out-of-bound accesses big enough to leak secret ma-
terial, stealth data-only attacks able to overwrite credentials,
or bug-combining exploits requiring a yet unknown composi-
tion technique... Which direction do you take?

The Bug / Exploit Asymmetry Developing an exploit
can be time-consuming, while fixing a bug may only take a
few minutes. Exploits are harder to write due to mitigations
such as DEP [7], ASLR [8], and heap hardening [9] [10] . Yet,
releasing a fix involves development, regression testing, and
a long staged roll-out, while running an exploit just takes
few seconds. A good balance involves comparing the cost of
rolling out new software at large with the amortized cost of
attacking targets at scale.

Approximate Exploitability Existing tools [11] [12] over-
approximate exploitability to be on the safe side. Augmented
crash analysis uses mappings such as: Program Counter Con-
trol — Must Be Exploitable, Write Primitive — Probably
Exploitable, Read Primitive — Probably Not Exploitable,
NULL pointer — Not Exploitable. However, bug effects some-
times manifest far away from their root cause. Precise ex-
ploitability needs to account for all possible bug effects from
the root cause rather than looking at specific executions or
crash instances.

Principled Exploitability Approximate Exploitability is
neither an optimal strategy for offense nor defense and leads
to poor understanding of risk. Benign bugs get fixed in an ill-
prioritized way while more impactful bugs may sit in the back-
log. [13] Poor bug selection by exploit writers can waste weeks
of research on unexploitable bugs. A discipline of exploitabil-
ity starts with evaluating the hardness of existing techniques
in the framework of Exploitability Classes (Figure 1).

Exploit Tools Automated Exploit Generation frame-
works [14] [15] [16] have tackled exploit synthesis for stack-
based and heap-based buffer overflow exploits. Such tech-
niques do not claim to find an exploit when one is feasible, as
they rely on path search and random walks heuristics requir-
ing global reasoning and state space exploration.

Weird Machines A mechanized representation of
trust [17] [18] [19] captures exploit execution as synchro-
nized with the target program execution states and transi-
tions. Composition of weird machines illustrates bug chaining
where combining distinct bug primitives is needed to craft a
complete attack.

Incorrectness Logic A new axiomatic logic [20] [21] pro-
motes under-approximate analysis and local reasoning as a
principled approach to bug finding. An error relation is used
to track invalidity constraints over program execution. IL can
reason about complex software without providing a concrete
input or full execution trace of program bugs.

Attack Soundness We introduce a new concept of sound-
ness which is only concerned with the exploitability of a bug
known a priori. It is different from the familiar one in pro-
gram analysis which is a statement about all possible bugs.
Exploitability requires a must-analysis as the existence of an
exploitable program path. It does not require that all pro-
gram paths are exploitable. Unexploitability requires a may-
analysis as all program paths may be visited to determine
that no bug effect can lead to a successful attack.

The Future Software vendors should determine ex-
ploitability of bugs before attackers do. Soundness of at-
tack ensures that a confirmed exploitable bug is fixed be-
fore bugs whose exploitability is not proven. Reasoning with
exploitability classes will help classify what constitute com-
putable attacks, leading to more efficient bug fixing.

*A wink and a tribute to Patrice Godefroid’s original statement [1], also to take with a grain of salt.
magine yourself in the computer security edition of the legendary game Zork [6]



Figure 1: Computational complexity classes of exploitability: B (Bugs), EB (Exploitable Bugs), PEB (Polynomially Ex-
ploitable Bugs), UEB (Under-approximate EB), OEB (Over-approximate EB), UB (Unexploitable Bugs), PUB (Polynomially-
provable Unexploitable Bugs) UUB (Under-approximate UB), OUB (Over-approximate UB) within E the set of all executions.
B = EB + UB, UEB C EB C OEB, UUB C UB C OUB
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