
Bi-Abductive Adversarial Program Synthesis
and software security applications

Julien Vanegue
January 14, 2024

Why Incorrectness Logic Matters

1. The world’s software stack becomes even more distributed.

• There is industry pressure to adopt compositional &
incremental program analysis techniques.

2. Large scale review of program analysis alerts requires
prioritization.

• No False Positive logic is needed for CI/CD integration.

3. Program errors must be explained to developers.

• Often requires a proof of vulnerability.

Vanegue Bi-Abductive Adversarial Program Synthesis 2 of 15

New Research Questions

1. How to prioritize bug investigation and fixing?

• Help bug triage by using incorrectness reasoning.

2. Which bugs are critical security vulnerabilities?

• Extend incorrectness logic for exploitability

3. Can we generate a bug witness automatically?

• Guide program synthesis adversarially

Vanegue Bi-Abductive Adversarial Program Synthesis 3 of 15

Adversarial Logic (SAS’22)

Incorrectness Logic
+ Dolev-Yao Model
= Adversarial Logic

Vanegue Bi-Abductive Adversarial Program Synthesis 4 of 15

Example: Oscillating Bit Protocol

// pre: client socket established
1. uint secret = rand();
2. void program(int sock)
3. {
4. uint err = 0;
5. uint cred = 0;
6. while (true) {
7. recv(sock, cred);
8. if (secret == cred)
9. err = 0;
10. else if (secret < cred)
11. err = 1;
12. else if (secret > cred)
13. err = 2;
14. if (!err) do_serve(sock);
15. send(sock, err);
16. }
17.}

// pre: server socket established
1. int adversary(int sock)
2. {
3. uint ret = 1;
4. uint guess = UINT_MAX;
5. uint step = (UINT_MAX/2)+1;
6. while (true) {
7. send(sock, guess);
8. recv(sock, ret);
9. if (ret == 1)
10. guess = guess - step;
11. else if (ret == 2)
12. guess = guess + step;
13. step = (step / 2) + 1;
14. adv_assert(ret == 0);
15. }
16.}

Vanegue Bi-Abductive Adversarial Program Synthesis 5 of 15

Concurrent Adversarial Separation Logic

CASL = CISL + Adversarial Reasoning + Rely-Guarantee

send(c , 8);
recv(c , y);

local secret := ∗;
local w [8] := {0};
local z := 0;
recv(c , x);
if (x ≤ 8)

z := w [x];
send(c , z);

See also:

A marriage of rely/guarantee and separation logic
by Viktor Vafeiadis and Matthew Parkinson (CONCUR’07)

CISL: Concurrent Incorrectness Separation Logic
by Azalea Raad, Josh Berdine, Dereck Dreyer and Peter O’Hearn (POPL’22)

CASL: A General Approach to Under-Approximate Reasoning About Concurrent Programs (CONCUR’23)
by Azalea Raad, Julien Vanegue, Josh Berdine and Peter O’Hearn

Vanegue Bi-Abductive Adversarial Program Synthesis 6 of 15

What is next?

AL / CASL requires an input adversarial program to reason about.

Can we synthesize the adversarial program and conditions?

Idea: Combine bi-abduction and deductive program synthesis

See also:

Compositional Shape Analysis By means of Bi-Abduction
by Cristiano Calcagno, Dino Distefano, Peter O’Hearn and Hongseok Yang (POPL’09)

Bi-abductive resource invariant synthesis
by Cristiano Calcagno, Dino Distefano, and Viktor Vafeiadis (APLAS’09)

Inductive Invariant Generation Via Abductive Inference
by Isil Dillig, Thomas Dillig, Boyang Li and Ken McMillan (OOPSLA’13)

JaVerT: JavaScript Verification and Testing Framework
by Philippa Gardner (PPDP’18)

Vanegue Bi-Abductive Adversarial Program Synthesis 7 of 15

Recall: (Bi-)Abduction

Abduction:

Compute the missing part δ of precondition P, such that P ∗ δ ⊢ Q

Bi-Abduction:

Compute anti-frame U and frame F , such that P ∗ U ⊢ Q ∗ F

Chaining:

{P1}c1{Q1} {P2}c2{Q2}
BA-seq Q1 ∗ U ⊢ P2 ∗ F

{P1 ∗ U} c1 ; c2 {Q2 ∗ F}

Vanegue Bi-Abductive Adversarial Program Synthesis 8 of 15

Bi-abductive Adversarial Reasoning

[AdvPre : Emp]
adversary(int x)
{

int ret = program(x);
}
[AdvPost : ret = vs]

[AdvPre : P ∗ U]
program(int x)
{
local secret := vs ;
local w [8] := {0};
local z := 0;
if (x ≤ 8)

z := w [x];
return(z);
}
[AdvPost : Q ∗ F]

Vanegue Bi-Abductive Adversarial Program Synthesis 9 of 15

Adversarial Frame and Anti-frame

[AdvPre : P ∗ U]
program(int x)
{
local secret := vs ;
local w [8] := {0};
local z := 0;
if (x ≤ 8)

z := w [x];
return(z);
}
[AdvPost : Q ∗ F]

We want [P ∗ U] c [Q ∗ F]
That is:
VCGen(c , P) ∗ U ⊢ Q ∗ F
We pick:
U : x = 8
P : Emp
F : z 7→ lz ∗ lz = vs

Q : ∗7
i=0wi 7→ li ∗ li = 0

∗ sec 7→ ls ∗ ls = vs

VCGen(c , P) = Q ∗
((x < 8 ⇒ z 7→ lz ∗ lz = 0) ∨
(x = 8 ⇒ z 7→ lz ∗ lz = vs))

Vanegue Bi-Abductive Adversarial Program Synthesis 10 of 15

Separated Adversarial Synthesis

Program synthesis:

∃c : {P} c {Q}

Adversarial synthesis:

∃ca : {Emp ∗ Pp} ca || cp {Qa ∗ Qp}

Our new separated problem:

∃ca : {Emp} ca {Pp} and {Pp} cp {Qp} and Qp =⇒ Qa

We reduced adversarial synthesis to a sequential program synthesis.

Vanegue Bi-Abductive Adversarial Program Synthesis 11 of 15

Program Synthesis for Heap

From Structuring the synthesis of heap-manipulating programs
by Nadia Polikarpova and Ilya Sergey (POPL’19)

Vanegue Bi-Abductive Adversarial Program Synthesis 12 of 15

Augmenting Program Synthesis

Γ; {ϕ; P}⇝ {ψ; Q}|c1 Σ; {ψ′; Q}⇝ {κ; R}|c2 ψ =⇒ ψ′
Seq

Γ,Σ; {ϕ; P}⇝ {κ; R}|c1; c2

Γ; {ϕ; P1}⇝ {ψ; Q1}|c1 Σ; {ϕ′; P2}⇝ {ψ′; Q2}|c2Par Γ,Σ; {ϕ; P1 ∗ ϕ′; P2}⇝ {ψ; Q1 ∗ ψ′; Q2}|c1||c2

Similar rules can be defined for Send, Recv, etc.

Vanegue Bi-Abductive Adversarial Program Synthesis 13 of 15

To be continued

Thank you Peter!

Thank you

What are your questions?

Contact: julien.vanegue@gmail.com

Vanegue Bi-Abductive Adversarial Program Synthesis 15 of 15

