Are Reverse Engineering and
Exploit Writing an Art or a Science?

NYUPoly THREADS conference Panel
Cyber Security Awareness Week
November 14t 2013, Brooklyn, NY, USA

with Dion Blazakis, Sergey Bratus,

) Dan Caselden, Brandon Edwards,
Travis Goodspeed, Pete Markowsky,
Cber Security Awareness Wack & NYU-Poly Meredith Patterson and Chris Rohlf

moderated by Julien Vanegue

Introduction

Reverse Engineering and Exploit Development can be
performed on programs in order to Discover and
Circumvent:

® Data protection schemes.
® Exploit prevention (“mitigations”) schemes

Common involved procedures can be:
® Static (Manual or Automated analysis)
® Runtime (Debugging, Fuzzing, Tracing, ...)

Foundations

“Computer programming is an exact science in that all the
properties of a program and all the consequences of
executing it in any given environment can, in principle, be
found out from the text of the program itself by means of
purely deductive reasoning.”

“The most important property of a program is whether it
accomplishes the intentions of its user.”

-- Sir C.A.R. Hoare, “An Axiomatic Basis for Computer
Programming”, 1969

Art

The end is where we start from. And every phrase

And sentence that is right (where every word is at home,
Taking its place to support the others,

The word neither diffident nor ostentatious,

An easy commerce of the old and the new,

The common word exact without vulgarity,

The formal word precise but not pedantic,

The complete consort dancing together)

Every phrase and every sentence is an end and a beginning,
Every poem an epitaph.

-- T.S. Eliot, “Little Gidding”, 1942

Science

® An expression of the Null hypothesis for computer
security can be : “The program will accomplish its
user’s intentions”.

® Across this presentation, first class citizens are
Exploits. An exploit is a proof by construction that
disproves the null hypothesis.

Part 1

The Art and Science of
Reverse Engineering

Semi-Automated Keygen Generation

e XOR Algorithm Il crackme by ksydfius
— Crackme uses an XOR + offset scheme

* Created an automatic keygen using:
— IDA Pro disassembler by llfak Guilfanov

— A symbolic emulator to generate SMT formulae
from user defined traces (Used the theory of Arrays
to model the strings and output)

-text-88401086E
-text-0040106F
-text-aa461671
-text-aauBe1674
-text-a84010676
-text-a84010678
-text-a840167A
-text-a848187D
-text-a8401067F
-text-a84010885%
-text-a8401088A
-text-88401088C
-text-aa4610691
-text-aa481091
-text-aa4610691
-text-a84010897
-text-a840108%9A
-text-a8401089C
-text-88401089E
-text-aB4B10A0
-text-aa4010A2
-text-aa4010AY
-text-a84010A6
-text-084010A8
-text-a840106AaD
-text-8840108AE
-text:a040106B0 ;
-text-aB4B010B0

SAKG : example

-text:084810E0 loc_4B6106B0:

-text:-004081068
-text:-004081068
-text:0848180E3

.text:8848186E encode user_serial proc near ; CODE XREF: DialogFunc+2CJlp
push ebhp
mov ebp, esp
sub esp, 18h
xor ehx, ebx
Xor ECX, ECX
xor edx, edx
cmp eax, 2Z@h ; user_input must be 32-chars
jnz short loc_4818B8
lea edi, lookup_ table ; “"We go about ouwr daily lives wunderstandi. ..
call find_starting point ; edx := sum of the first 32 chars of user input
mov ehx, edx
call mod_by 28 hex ; ebx = 8, edx := {sum of First 32 chars) % 32
loc_4@1891: ; CODE XREF: encode user_ serial+48}]j
lea esi, user_input String
cmp byte ptr [edi], @
jz short loc_4818B8
add esi, edx
mov al, [esi] ; move char from user_input string to al
®or [edi], al ;: lookup table[i] := user_input[idx] ~ lookup_table[i]
add [edi], d1
add bl, [edi] ; mod by ?8 hex zeroes ebx so this is always zero
add bl, dl ; bl := (®or-ed{char) + dl}) + dl
call mod_by 28 hex
inc edi
jmp short loc_ 481891
; CODE XREF: encode user serial+FTj
; encode_user serial+2cTj
add esp, 18h
pop ebhp
retn

-text:00481084

-text:-88468160B4 encode user serial endo

41
42
43
44
45
46
47
48
49
5@
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

= def Main()?
-~ solver = z3.50lver()

‘user_input_array = z3.Array("input", z3.BitVecSort (&), z3.BitVecSort(&))

‘output_str = z3.Array("output_str", z3.BitVecSort(&8), z3.BitVecSort(&))
- -solver, Llookup_table = CreatelookupTable(solver, lookup_table_str)

‘#-add the path conditions that the user_str_index is-equal to the sum-of the

“# first- 32 characters
‘user_str_idx = FindStartingPoint(user_input_array)
~#-make sure-the user_str_idx stays modulo-32
‘user_str_ddx = user_str_ddx % 0x20

“# create conditions from the encoding loop

= ""fﬂr'

i-in xrange(240)1

output_str = z3.5tore{output_str, 1, (user_input_array[dl] #* lookup_table[i]) + user_str_idx)"

user_str_idx = (output_str[i] + user_str_idx) % ©x20

“#-1imit input - to-the printable - ascii range

= ""fﬂr'

“#-Make sure-our output_string s constrained to -match our-expected result

i-in xrange(9x20) 3

solver.add(z3.And(z3.UGE(user_input_array[il, 322},
------------------ ZE.ULT(user_input_array[ﬁ],-12?!]]

= - for i 1in xrange(len(encoded_str)):

-------- solver.add(output_str[i] == ord(encoded_str[i]))
= - if solver.check() == z3.sat?

-------- print 'SAT'

m-=-solversmodel()

print - '"Valid Serial-is:-

= - - eglse!

print "UNSAT'

"+ MakeInputStr{str(m[user_input_array]l))

Automatically Identifying All Valid
Inputs to a Port Verification Function

* Needed to determine]
the list of valid ports :;m:- — |
— Fed to the function as | i:ﬂ # ::i:é L B=
memory address =]
. . Ilkm—;
* Function properties =
— Lots of arithmetic checks]
=y
— No loops! == [T==

— Jump table aazﬂﬁj_‘ =

10

Collect ALL the ports!

* Process

— Convert each path from start to end to an SMT formulae and
take the disjunction of the resulting path conditions.

— While the formulae is SAT

* Get a model for the port number and record the value

* Add a new constraint specifying that the port number !=the number
we just found.

— ROI (complete in 30 seconds vs more than 2 hours by hand)

ports = []

The port is 2 bytes and we reprsent memory as bytes

This is what the memory is in the location that the port number to be
wvalidated exists at when the function begins

read_short = z3_wrapper.Concat(ents[10065], ents[100064])
final_constraints = [] # Accumulated previous valid ports to ?

for ents in terms:

while True:
Get a model for a valid port (R® == @ at end of function)
sat will == False when no more valid ports are possible
solver, sat, model = ents.0bjSolve(final_constraints+[ents.RO == 0])
if not sat:
break

Evaluate what the port value would be in this satisfiable model

port_num = model.eval(read_short).as_long()

print{"“PORT:"", hex(port_num))

ports.append{port_num)

Accumulate our valid ports so that next time around we will get

a different possible solution. 11
final_constraints.append(read_short *= port_num)

Scalability of Symbolic Execution

* Symbolic Execution has trouble reasoning
about full systems.

 What happens to vanilla symbolic execution?

— Often gets stuck exploring argument parsing and
error reporting forever.

* One classic issue is ‘Path Explosion’

12

Example of Path Explosion

num_dots =0
for cin sys.argv[1]:

ifc==": num_dots+=1
if num_dots ==1:

assert(“Nooooo!”)

Even for simple cases, the program has a large number of
paths. For example, see the simple cases where:

I
wN =

len(sys.argv[1])
len(sys.argv[1])
len(sys.argv[1])

Workarounds

Most successful tools:
— Mark less data ‘symbolic’
— Explore fewer paths

Methods:

— Mix concrete and symbolic execution
e Use snapshots or inputs as checkpoints
e Start with sample input and build constraints dynamically

— |dentify & prune uninteresting or redundant paths
— Selective symbolic execution

» Skip libraries, kernel
 Just explore this function locally

— Many, many more.

14

Part 2

The Art and Science of
Vulnerability Discovery

WebKit - Use After Free

WebKit has had many vulnerabilities in its DOM/WebCore code
Everyone treats them like magic when found with fuzzers

o Root cause analysis shows the pattern is simple/easy to extract

o Once you understand the pattern, apply it to other DOM code
Code pattern is simple if you understand underlying components:

o Reference Counting (RefPtr, PassRefPtr, OwnPtr) templates

o JavaScript events

o TCMalloc overloaded new/delete

= WebKit has no garbage collector, Javascript engine does

Root cause analysis -> apply the pattern -> find more bugs

o Finds exploitable bugs in a focused way

o No complex reasoning required

16

WebKit - Use After Free

When might the code not be able to guarantee the lifetime
of the object?

Example: Javascript Event Callbacks

 The RefPtr documentation actually tells you what WebKit
UAF looks like.

“If ownership and lifetime are guaranteed, a local variable can
be a raw pointer but if the code needs to hold ownership or
guarantee lifetime, a local variable should be a RefPtr”

17

WebKit - Use After Free

HTMLElement.cpp
[445] void HTMLElement::setOuterText(const String &text,
ExceptionCode& ec)

[468] RefPtr<Text> t = Text::create(document(), text);
[469] ec=0;
[470] parent->replaceChild(t, this, ec);

[488] Node* next = t->nextSibling();

[489] if (next && next->isTextNode()) {

[490] Text* textNext = static_cast<Text*>(next);

/* The call below triggers JS event that will remove node pointed by textNext */
[491] t->appendData(textNext->data(), ec);

[492] if (ec) return;

[493] textNext->remove(ec); €< Uses stale pointer

18

Part 3

The Art and Science of
Exploit generation

Exploit Development as Art

Application Specific Attacks

— Usually require detailed and “cross layer” understanding of
an application’s semantics

— What humans do best? (moving between layers of
abstraction?)

Mark Dowd’s ActionScript:

— Confusion between x86 and bytecode execution
Comex’s star exploit :

— Font program for runtime calculation (see Sogeti write-up)
Exploit primitive alchemy :

— Pivoting to better control

20

Exploit Development as Science

What we just talked about: Vulnerability discovery
— Everyone has a plan for this — Al, SMT, SE, GP/GA,
— See co-panelist’s thoughts on machine-assisted auditing

ROP-chains

— Could be more important in a future with runtime
diversification (fine grained ASLR) — ROP computed at
exploit time

Controlled/influenced values
— Dataflow analysis can tell us about these
Fuzzing for primitives

— Instrumentation + a search algorithm for discovering states
with complex constraints

21

A common problem:
non-determinism in programs

Assume attacker can overflow chunk 1 and chunk 3 is a target:

Heap in 90% of executions of program P :

- Chunk 1, Size S1, Addr Chunk 2, Size S2, Chunk 3, Size S3,
Al Addr A2 =A1+S1 Addr A3 =A2 +S2

Heap in 10% of executions of program P :

- Chunk 1, Size S1, Addr Chunk 3, Size S3, Chunk 2, Size S2,

Al Addr A2 =A1+S1 Addr A3 = A2 +S3

SMT solvers are unable to reason about non-determinism 22

Idea: Markov exploits

* Andrei Markov (1856-1922)

e Systems (Programs) may seem
to act randomly, but have a
hidden probabilistic regularity.

* |nstrument program and
deduce from sampling which
paths have most chance to
bring the heap in a desired
exploitable state.

23

Markov transition system

/l 04 0.95 N\ /'

0.

9
'\

1

/sO

s @
4

0.05

The transition system models the set of all possible random walks.

24

Markov transition system

Previous slide explained:

* We computed the probability of reaching every heap states in a
maximum of two heap interactions (malloc, free, etc)
* Probability of reaching S4 is:
P(S4) = P(S4|S2) * P(S2|S1) =0.6 * 0.9 = 0.54 (54%)
* Probability of reaching S5 is:
P(S5) = P(S5|S2) * P(S2|S1) + P(S5]|S3) * P(S3|S1)
=0.9*0.4 + 0.95*0.1 = 0.455 (45.5%)
* Probability of reaching S6 is:
P(S6) = P(S6|S3) * P(S3 | S1) =0.1 * 0.05 = 0.005 (0.5%)

Assuming S5 and S6 are the only two desired exploitable states, we
can compute that the most exploitable walks end in S5.

25

Part 4: Synthesis

The Rise of Weird Machines

Weird Machines

Exploitation is unintended, unexpected computation within
the target. If the target machine were exactly as its
programmers’ model, exploitation would not be possible.

Exploit is a proof by construction that there exists a "weird
machine", an unexpected programmable environment inside
the target. The exploit programs it.

Features, bugs, and primitives in the target are weird
machine’s assembly instructions.

Weird machines don't respect layers of abstraction. Layers of
abstraction become boundaries of competence & enable
weird machines.

Any input is a program

e Sufficiently complex inputs are
indistinguishable from byte code of a (weird)
virtual machine embedded in input handler

* |Input handler for sufficiently complex inputs
are indistinguishable from a (weird) VM

* Inputs run on code:
— All exploits are example of such inputs

— ELF relocation tables are Turing Complete (TC)
— IA32 MMU tables are TC

Exploits are models

* What do we call forgetting much of the
program and focusing on just some parts?
— (@) modeling
— (b) symbolic execution
— (c) exploitation?
* For example, Return Oriented Programming

ignores (almost) all parts of the target except
those behind its control flow graph.

Is Assembly Programming Art?

Yes, a dark art ©
But, art + algorithms = science, right?
Compilation to assembly is surely science

— “I'd rather write programs that write programs than

write programs”

So is automating “weird assembly” programming

— “When the going gets weird, the weird turn pro”

30

Exploits: “physics” of security

 What do we call exploration of reality beyond
current mathematical abstractions?

(a) In Natural Science: Physics
(b) In Computer Security: Exploitation

* In time, new refinements emerge to fill the gap
between abstraction and reality

— This is how physics progressed

Security science is incomplete
without the study of exploits

31

This panel was held for the Cyber Security
Awareness Week 10t anniversary at the
New York University Polytechnic School of
Engineering on Metro Tech Center Campus.

https://csaw.isis.poly.edu/

https://csaw.isis.poly.edu/

