

Are Reverse Engineering and
Exploit Writing an Art or a Science?

NYUPoly THREADS conference Panel

Cyber Security Awareness Week
 November 14th 2013, Brooklyn, NY, USA

 with Dion Blazakis, Sergey Bratus,

 Dan Caselden, Brandon Edwards,
 Travis Goodspeed, Pete Markowsky,
 Meredith Patterson and Chris Rohlf

 moderated by Julien Vanegue

1

Introduction

Reverse Engineering and Exploit Development can be
performed on programs in order to Discover and
Circumvent:

• Data protection schemes.

• Exploit prevention (“mitigations”) schemes

Common involved procedures can be:

• Static (Manual or Automated analysis)

• Runtime (Debugging, Fuzzing, Tracing, …)

2

Foundations

“Computer programming is an exact science in that all the

properties of a program and all the consequences of
executing it in any given environment can, in principle, be
found out from the text of the program itself by means of
purely deductive reasoning.”

“The most important property of a program is whether it

accomplishes the intentions of its user.”

 -- Sir C.A.R. Hoare, “An Axiomatic Basis for Computer
Programming”, 1969

 3

Art
The end is where we start from. And every phrase

And sentence that is right (where every word is at home,

Taking its place to support the others,

The word neither diffident nor ostentatious,

An easy commerce of the old and the new,

The common word exact without vulgarity,

The formal word precise but not pedantic,

The complete consort dancing together)

Every phrase and every sentence is an end and a beginning,

Every poem an epitaph.

 -- T.S. Eliot, “Little Gidding”, 1942

4

Science

• An expression of the Null hypothesis for computer
security can be : “The program will accomplish its
user’s intentions”.

• Across this presentation, first class citizens are
Exploits. An exploit is a proof by construction that
disproves the null hypothesis.

5

Part 1

The Art and Science of
Reverse Engineering

Semi-Automated Keygen Generation

• XOR Algorithm II crackme by ksydfius

– Crackme uses an XOR + offset scheme

• Created an automatic keygen using:

– IDA Pro disassembler by Ilfak Guilfanov

– A symbolic emulator to generate SMT formulae
from user defined traces (Used the theory of Arrays
to model the strings and output)

7

SAKG : example

8

9

Automatically Identifying All Valid
Inputs to a Port Verification Function

• Needed to determine
the list of valid ports

– Fed to the function as
memory address

• Function properties

– Lots of arithmetic checks

– No loops!

– Jump table

10

Collect ALL the ports!

• Process
– Convert each path from start to end to an SMT formulae and

take the disjunction of the resulting path conditions.
– While the formulae is SAT

• Get a model for the port number and record the value
• Add a new constraint specifying that the port number != the number

we just found.

– ROI (complete in 30 seconds vs more than 2 hours by hand)

11

Scalability of Symbolic Execution

• Symbolic Execution has trouble reasoning
about full systems.

• What happens to vanilla symbolic execution?

– Often gets stuck exploring argument parsing and
error reporting forever.

• One classic issue is ‘Path Explosion’

12

Example of Path Explosion

num_dots = 0
for c in sys.argv[1]:
 if c == ‘.’: num_dots += 1
if num_dots == 1:
 assert(“Nooooo!”)

Even for simple cases, the program has a large number of
paths. For example, see the simple cases where:

 len(sys.argv[1]) = 1
 len(sys.argv[1]) = 2
 len(sys.argv[1]) = 3

13

Workarounds

• Most successful tools:
– Mark less data ‘symbolic’
– Explore fewer paths

• Methods:
– Mix concrete and symbolic execution

• Use snapshots or inputs as checkpoints
• Start with sample input and build constraints dynamically

– Identify & prune uninteresting or redundant paths
– Selective symbolic execution

• Skip libraries, kernel
• Just explore this function locally

– Many, many more.

14

Part 2

The Art and Science of
Vulnerability Discovery

15

WebKit - Use After Free

• WebKit has had many vulnerabilities in its DOM/WebCore code

• Everyone treats them like magic when found with fuzzers

o Root cause analysis shows the pattern is simple/easy to extract

o Once you understand the pattern, apply it to other DOM code

• Code pattern is simple if you understand underlying components:

o Reference Counting (RefPtr, PassRefPtr, OwnPtr) templates

o JavaScript events

o TCMalloc overloaded new/delete

 WebKit has no garbage collector, Javascript engine does

• Root cause analysis -> apply the pattern -> find more bugs

o Finds exploitable bugs in a focused way

o No complex reasoning required

16

WebKit - Use After Free

• When might the code not be able to guarantee the lifetime
of the object?

Example: Javascript Event Callbacks

• The RefPtr documentation actually tells you what WebKit
UAF looks like.

“If ownership and lifetime are guaranteed, a local variable can
be a raw pointer but if the code needs to hold ownership or
guarantee lifetime, a local variable should be a RefPtr”

 17

WebKit - Use After Free

18

HTMLElement.cpp 
[445] void HTMLElement::setOuterText(const String &text,
 ExceptionCode& ec)
…
[468] RefPtr<Text> t = Text::create(document(), text);
[469] ec = 0;
[470] parent->replaceChild(t, this, ec);
…
[488] Node* next = t->nextSibling();
[489] if (next && next->isTextNode()) {
[490] Text* textNext = static_cast<Text*>(next);
/* The call below triggers JS event that will remove node pointed by textNext */
[491] t->appendData(textNext->data(), ec);
[492] if (ec) return;
[493] textNext->remove(ec);  Uses stale pointer

Part 3

The Art and Science of

Exploit generation

Exploit Development as Art

• Application Specific Attacks

– Usually require detailed and “cross layer” understanding of
an application’s semantics

– What humans do best? (moving between layers of
abstraction?)

• Mark Dowd’s ActionScript:

– Confusion between x86 and bytecode execution

• Comex’s star exploit :

– Font program for runtime calculation (see Sogeti write-up)

• Exploit primitive alchemy :

– Pivoting to better control

 20

Exploit Development as Science

• What we just talked about: Vulnerability discovery
– Everyone has a plan for this – AI, SMT, SE, GP/GA, ….
– See co-panelist’s thoughts on machine-assisted auditing

• ROP-chains
– Could be more important in a future with runtime

diversification (fine grained ASLR) – ROP computed at
exploit time

• Controlled/influenced values
– Dataflow analysis can tell us about these

• Fuzzing for primitives
– Instrumentation + a search algorithm for discovering states

with complex constraints

21

A common problem:
non-determinism in programs

Heap in 90% of executions of program P :

Heap in 10% of executions of program P :

Chunk 1, Size S1, Addr
A1

Chunk 2, Size S2,
Addr A2 = A1 + S1

Chunk 3, Size S3,
Addr A3 = A2 + S2

Chunk 1, Size S1, Addr
A1

Chunk 3, Size S3,
Addr A2 = A1 + S1

Chunk 2, Size S2,
Addr A3 = A2 + S3

S1 =

S2 =

SMT solvers are unable to reason about non-determinism

Assume attacker can overflow chunk 1 and chunk 3 is a target:

22

Idea: Markov exploits

• Andrei Markov (1856-1922)

• Systems (Programs) may seem
to act randomly, but have a
hidden probabilistic regularity.

• Instrument program and
deduce from sampling which
paths have most chance to
bring the heap in a desired
exploitable state.

23

Markov transition system

S1

S2 S3

S4 S5
S6

 0.9
0.1

 0.6
 0.4

0.95

0.05

The transition system models the set of all possible random walks.

24

Markov transition system

Previous slide explained:

• We computed the probability of reaching every heap states in a

maximum of two heap interactions (malloc, free, etc)
• Probability of reaching S4 is:
 P(S4) = P(S4|S2) * P(S2|S1) = 0.6 * 0.9 = 0.54 (54%)
• Probability of reaching S5 is:
 P(S5) = P(S5|S2) * P(S2|S1) + P(S5|S3) * P(S3|S1)
 = 0.9*0.4 + 0.95*0.1 = 0.455 (45.5%)
• Probability of reaching S6 is:
 P(S6) = P(S6|S3) * P(S3 | S1) = 0.1 * 0.05 = 0.005 (0.5%)

Assuming S5 and S6 are the only two desired exploitable states, we
can compute that the most exploitable walks end in S5.

25

Part 4: Synthesis

The Rise of Weird Machines

26

Weird Machines

• Exploitation is unintended, unexpected computation within
the target. If the target machine were exactly as its
programmers’ model, exploitation would not be possible.

• Exploit is a proof by construction that there exists a "weird
machine", an unexpected programmable environment inside
the target. The exploit programs it.

• Features, bugs, and primitives in the target are weird
machine’s assembly instructions.

• Weird machines don't respect layers of abstraction. Layers of
abstraction become boundaries of competence & enable
weird machines.

27

Any input is a program

• Sufficiently complex inputs are
indistinguishable from byte code of a (weird)
virtual machine embedded in input handler

• Input handler for sufficiently complex inputs
are indistinguishable from a (weird) VM

• Inputs run on code:
– All exploits are example of such inputs

– ELF relocation tables are Turing Complete (TC)

– IA32 MMU tables are TC

28

Exploits are models

• What do we call forgetting much of the
program and focusing on just some parts?

– (a) modeling

– (b) symbolic execution

– (c) exploitation?

• For example, Return Oriented Programming
ignores (almost) all parts of the target except
those behind its control flow graph.

29

Is Assembly Programming Art?

• Yes, a dark art 

• But, art + algorithms = science, right?

• Compilation to assembly is surely science

– “I’d rather write programs that write programs than
write programs”

• So is automating “weird assembly” programming

– “When the going gets weird, the weird turn pro”

30

Exploits: “physics” of security

• What do we call exploration of reality beyond
current mathematical abstractions?
(a) In Natural Science: Physics

(b) In Computer Security: Exploitation

• In time, new refinements emerge to fill the gap
between abstraction and reality
– This is how physics progressed

 Security science is incomplete
without the study of exploits

31

This panel was held for the Cyber Security
Awareness Week 10th anniversary at the

New York University Polytechnic School of
Engineering on Metro Tech Center Campus.

https://csaw.isis.poly.edu/

32

https://csaw.isis.poly.edu/

