
The Automated Exploitation Grand Challenge

A Five-Year Retrospective

Julien Vanegue

IEEE Security & Privacy Langsec Workshop

May 25th 2018

AEGC 2013/2018 vs DARPA Cyber Grand Challenge

I Was Automated Exploit Generation solved with DARPA CGC?
Not quite.

I DARPA Cyber Grand Challenge ranked solutions on three
criteria:

1. Attack (how well you exploited)
2. Defense (how well you defended against exploits)
3. Performance (Availability of your services)

I CGC Post-mortem: “Cyber Grand Challenge: The Analysis” :
http://youtube.com/watch?v=SYYZjTx92KU

I DARPA CGC scratched the surface, this presentation focuses
on what is under the carpet.

I We focus on memory attacks and defense, there are other
classes we dont cover here.

http://youtube.com/watch?v=SYYZjTx92KU

Automated Exploit Generation Challenges

Original AEGC 2013 challenges: http://openwall.info/wiki/

_media/people/jvanegue/files/aegc_vanegue.pdf

In a nutshell, attacks are decomposed into five classes:

CLASS 1: Exploit Specification (“sanitizer synthesis”)
CLASS 2: Input Generation (“white-box fuzz testing”)
CLASS 3: State Space Management (“combinatorial explosion”)
CLASS 4: Primitive Composition (“exploit chaining”)
CLASS 5: Information disclosure (“environment determination”)

http://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf
http://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

CLASS 1: Exploit Specification

For a given program p :
For all inputs i1, ..., in:
For all assertions a1, ..., am:

Safety condition: ∀a : ∀i : p(i)⇒ a

Attack condition: ∃a : ∃i : p(i)⇒ ¬a

where p is the program interpretation on the input i (for
example, construction of a SMT formula)

CLASS 1 approach: Sanitizer synthesis

Sanitizers are developer tools to catch bugs early at run time:

I Valgrind (ElectricFence before it): heap sanitizer (Problem:
too intrusive for exploit dev)

I Address Sanitizer: clang compiler support to solve same
problem as Valgrind in LLVM.

I Cachegrind: simulate how program interacts with cache
hierarchy and branch predictor.

I Helgrind: detect data races, locking issues and other thread
API misuses.

Current research directions include coupling sanitizers with static
analysis and/or symbolic execution.
See KLEE workshop talks: https://srg.doc.ic.ac.uk/klee18

https://srg.doc.ic.ac.uk/klee18

CLASS 2: Input Generation

After defining what attack conditions are, input generation
provides initial conditions to exercise sanitizing points:

I DART/SAGE: First white-box fuzzers (Godefroid, Molnar,
Microsoft Research, 2006-)

I EXE/KLEE (Open-source Symbolic execution engine, Cadar,
Dunbar and Engler, 2008-)

I American Fuzzy Lop aka AFL (Zalewski, 2014-) : (First?)
open-source grey-box fuzzer

I More recently: Vuzzer, AFLfast, AFLgo, etc. (2016-)

These tools provide input mutation strategies to cover more
path/locations in tested programs.
By now, input generation is a well-understood problem for
restricted sequential programs.

CLASS 3: State-space management

A well known problem in program analysis is Combinatorial
explosion. For several classes of programs, this leads to
exponential blow-up of the state space:

I Multi-threaded programs: For i instructions, n threads:
scheduling graph contains ni states.

I Heap-based programs: For i allocations, n possible allocation
size bins: heap config space contains ni states.

Motivation: Data Only Attacks (DOA)

Data-only attacks form a vulnerability class that can bypass exploit
protections such as:

I Non-execution mitigations (DEP, W∧E) : no code injection
needed.

I Control-Flow Integrity (CFI) : no code redirection needed.

Under certain conditions, it can defeat:

I Address Space Layout Randomization (if it does not rely on
absolute addresses)

I Heap meta-data protections (if it does not rely on heap
meta-data corruptions)

Example of DOA: heartbleed (lines up chunks in memory to leak
private material)

Decide safety using Adjacency predicate

∀x¬∃y : TGT (y) ∧ ADJ(x , y) ∧ OOB(x)

I ADJ(x,y) = true iff x and y are adjacent (base(x) + size(x) =
base(y) or base(y) + size(y) = base(x).

I OOB(x) = true iff there exists an out-of-bound condition on
memory buffer x.

I TGT(x) = true iff memory cell x is an interesting target to
overwrite.

Decide safety using Distance function

∀x¬∃y : TGT (y) ∧ DOOB(x) > DIST (x , y)

I DIST(x,y) : N = | base(x) - base(y) |
I DOOB(x) : N is the maximum offset from x’s base address

that can be (over)written/read.

I TGT(y) = true iff chunk y is an interesting target to
overwrite.

Automation challenges for Heap attacks

1. Do not confuse Logical and Spatial Heap semantics (Shape
Analysis vs. Layout Analysis)

I Heap Models for Exploit Systems (Vanegue, Langsec 2015)
I Automated Heap Layout Manipulation for Exploitation (Heelan

et al. to appear in Usenix Security 2018)

2. Decision of the ADJ(x,y) predicate is too approximate in the
abstract. Requires tracking heap bins finely.

3. ADJ(x,y) is not separable for each heap bin: two chunks
belonging to different bins could still be adjacent.

4. Each heap allocator uses different rules for memory
management.

5. Heap distance across executions monotonically grows with
time (a problem for heap-heavy programs, such as browsers)

CLASS 4: Automate Exploit Chaining

I Five years ago: “Multi-interaction exploits” was already a
problem in the AEGC 2013

I Exploit Chaining is one of the main techniques used in real
exploits today.

I Examples of Exploits Chain: Pinkie Pie Pwnium 2012 (chain
of logic bugs and memory corruption to escape Chrome
sandbox): Used pre-rendering feature to load Native client
plug-in, from where triggered a buffer overflow in the GPU
process, leading to impersonating a privileged renderer process
via IPC squatting. From there, used an insecure
Javascript-to-C++ interface to specify extension path to be
loaded (impersonating the browser), and finally loaded an
NPAPI plug-in running out of the sandbox. See “A Tale of
Two Pwnies (Part 1)” by Obes and Schuh (Google Chromium
blog)

Multi-interaction exploits (aka Exploit Chaining) leads

I As a matter of fact, little to no progress on automating
chaining in last 5 years.

I Weird Machines characterize exploits as untrusted
computations over a state machine.

I Problem: How to automate state creation on the weird
machine?

I Formally: If a program is a function of type: X ⇒ Y , where
X is an initial state leading to corrupted state Y then:

∃Z : X ⇒ Z ∧ Z ⇒ Y

We dub this “The intermediate exploit state problem”.

The Intermediate Exploit State problem

I There are whole chains of intermediates:

∃Z1,Z2, ...,Zn : X ⇒ Z1 ∧ Z1 ⇒ Z2 ∧ ... ∧ Zn−1 ⇒ Zn

I For each step i , is there a unique candidate Zi? Not if state
depends on control predicates (if/else/for conditions)

I Even for a single path, there may be multiple Zi one could
choose from. In particular, see “The Weird Machines in Proof
Carrying Code” (Langsec 2013): characterize unaccounted
intermediate steps in PCC.

CLASS 5: Information disclosure (ex: side-channel attacks)

Information disclosures (or “Info leak”) has been used for at least
15 years in exploits.

I Direct info leaks (read uninitialized memory, OOB read, etc)

I Indirect info leaks (infer information from timing or other
observable quantities)

In the last year, new hardware-based info leaks were publically
released (Spectre, Meltdown, etc):

I Variant 1: Speculative bound check bypass (Jan 2018)

I Variant 2: Branch Target Buffer (Jan 2018)

I Variant 3: Rogue Data Cache Load (Jan 2018)

I Variant 4: Speculative Store Bypass (May 2018)

Ref: “Reading privileged memory with a side-channel” (by Jann
Horn, Google P0)
Attack: Exploit speculative caching CPU feature for timing attacks.
Outcome: Attacker can predict bit values across privilege levels.

Spectre Variant 1 : a possible candidate for exploit
automation

s t ruc t a r r a y { u l o n g l e n ; uchar data [] ; }

(. . .)
s t ruc t a r r a y * a r r 1 = i n i t t r u s t e d a r r a y (0 x10) ;
s t ruc t a r r a y * a r r 2 = i n i t t r u s t e d a r r a y (0 x400) ;
u l o n g u n t r u s t e d o f f s e t = r e a d u n t r u s t e d l e n () ;
i f (u n t r u s t e d o f f s e t < a r r 1−>l e n) {

uchar v a l u e = a r r 1−>data [u n t r u s t e d o f f s e t] ;
u i n t i d x = 0 x200 + ((v a l u e & 1) * 0 x100) ;
i f (i d x < a r r 2−>l e n)

return (a r r 2−>data [i d x]) ;
}

(. . .)

Insights

I Possible strategy: Assume CPU behavior, check programs for
vulnerable code traits

I Interestingly: try to detect effects (cached state), not root
cause (as usual).

I This is non-standard for static analysis (usually go after root
cause by checking invariant, etc).

I Traditional black/grey/white-box fuzzers are blind to these
properties.

I Checking such properties appears beyond compile-time
analysis.

I Mitigations are already underway (ex: retpoline against
Spectre Variant 2).

I Augmented static analysis or symbolic execution could be
designed to keep track of cached states and speculative
conditions (not trivial)

Another new problem: Automating Rowhammer-style
attacks

Rowhammer is a hardware attack that can flip bits in memory with
a probabilistic chance of success.
None of the discussed techniques would work to detect this:

I One need a probabilistic semantic to model such attacks.

I In spirit: Similar to brute-forcing a password: requires a lot of
tries, success is aleatory.

I Possible approach: quantify attack success using techniques
typically used by cryptographic security proofs.

I Possible outcome: prove hardware is secure with very high
probability.

I Prediction: flaw will be fixed by design in next generation
hardware.

I Counter-Prediction: probabilistic memory attacks are not
going away, a framework is needed to study them.

Summing up

What is the next exciting autoresearch ahead?
Done? Some techniques Few/No tech

Input Generation X

Exploit Specification X

State Space Management X

Primitive Composition X

Information disclosure X

Conclusion

Automated Exploit Generation is not yet solved in 2018.

Beware of folks telling you otherwise. People will try.

Questions?

Mail: julien.vanegue@gmail.com Twitter: @jvanegue

